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ABSTRACT

This study analyses the inherent evolution dynamics of economic activity and global oil 
prices in China using the tools of wavelet and wavelet-based VAR-GARCH-BEKK model. 
Besides, the Wavelet-Granger causality test of Olayeni (2016) provides us further insights 
into the magnitude and direction of causal connectedness between oil prices and economic 
activity in China over time and across different frequencies simultaneously. We find that the 
spillover effects between China’s economic activity and global oil prices are time-varying 
in different time and frequencies in terms of direction and strength. More accurately, the 
prices and volatility spillovers between them are significant in the short and medium run 
but eventually neutral toward the long run. The Wavelet-Granger causality provides us 
further insights into the lead-lag relationships between oil prices and China’s economic 
activity from an economic perspective. The dynamic time-frequency association findings 
suggest crucial implications that might assist policymakers and other market participants 
in mitigating risk.

Keywords: causality, economic activity, oil prices, VAR-GARCH-BEKK, wavelet 
analysis

https://doi.org/10.21315/aamj2024.29.1.2
https://doi.org/10.21315/aamj2024.29.1.2


Thuy Tien Ho  et al.

26

INTRODUCTION 

The dynamic associations between the global oil market and economic activity 
levels have increasingly been the concentration of extensive research because 
fluctuations in oil prices have created an unpredictable effect on the international 
economies (Yu et al., 2019). China has become a net oil importer since 1994. Peng 
et al. (2020) show that China has become the largest oil-import country in the 
world since 2016, and the global dependence on China’s oil has been up to 65.4%. 
The rising international dependence on China’s crude oil sharply intensified the 
impact of worldwide oil on China’s economy.

Over the past couple of decades, China has maintained and established itself as 
the fastest-growing emerging economies in the world, and China’s economy has 
been dramatically influenced by the international oil price shocks (Allen et al., 
2013; Peng et al., 2020; Hung, 2022b) since the reform and opening up, driving oil 
demand to increase quickly (Chen et al., 2021). China’s crude oil imports have also 
increased to fulfill local demand, resulting in a very strong link with imports (Chen 
et al., 2020). As a result, it is indispensable to look into the causal associations 
between global oil prices and economic growth in China. 

In the existing literature, extensive research examines numerous complexities in 
the connectedness between oil price shocks and industrial output. However, the 
present literature results have never reached a consensus and had mixed results 
in this issue. The nexus between crude oil market and industrial output is carried 
out by utilising data sets for different countries (Ahmed et al., 2017; Awartani  
et al., 2020; Herrera et al., 2011; Raza et al., 2018; Scholtens & Yurtsever, 2012). 
Several papers take into account the non-linearity in the nexus between global 
oil market and industrial output (Huang et al., 2005; Mehrara & Sarem, 2009; 
Sakashita & Yoshizaki, 2016; Yıldırım & Öztürk, 2014). In the Chinese context, 
the connections between the oil market and industrial output are examined (Chen 
et al., 2021; Cross & Nguyen, 2017; He, 2020; Tang et al., 2010), but the interplay 
between the global oil market and industrial output as well as the methods used is 
limitedly discussed (Raza et al., 2018).

Notwithstanding the economic activity influence of the oil price variations, 
there are two more issues that need to be addressed. First, previous research has 
focused on the relationship between oil prices and macroeconomic fundamentals, 
whereas related research on industrial production remains limited (Sakashita & 
Yoshizaki, 2016). Second, the existing literature has primarily utilised in-variant 
methodologies. Specifically, recent papers have started to conduct the study on the 
nexus between oil price variations and macroeconomic indicators from the time-
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varying perspective (Chen et al., 2020; Chen et al., 2021; Cross & Nguyen, 2017; 
He, 2020; Jo et al., 2019; Peng et al., 2020; Raza et al., 2018; Tang et al., 2010). 
These papers have employed either single-country data or multi-country panel 
data to examine the intercorrelation within the time-domain approach. However, 
time-varying connectedness between global oil prices and economic activity can 
change across various frequencies (Hung, 2022a). The true economic link between 
variables, rather than the conventional aggregated level, would be expected to hold 
at the scale level, according to Tiwari et al. (2019).

Based on the above deficiencies, we employ a wavelet methodology to look into 
the dynamic interplay between the global oil market and China’s industrial output. 
The VAR-GARCH-BEKK model is applied to capture the dynamic multiscale 
associations between international crude oil markets and economic activity in 
China. Empirically, we employ multiple wavelet approach methods to examine 
both lead-lag relationship and casual associations in co-movements between 
variables under consideration. More importantly, in economics, the ability to 
observe time-series variables spanning both time and frequency may be more 
appealing than either time or frequency alone, because time series variables are 
frequently prone to regime shifts, structural breaks, outliers, and clustering (Hung, 
2022a; Tiwari et al., 2019). Besides, through using the VAR-GARCH-BEKK 
model, we provide a deeper investigation of the degree of the price and volatility 
spillovers and other time-varying effects across the Chinese economic activity and 
oil prices at different time and frequency domains. Our empirical results conclude 
that there is the existence of time-varying co-movement and spillover between 
global oil prices and Chinese economic activity. 

Our paper provides three primary contributions. First, the current paper expands the 
existing literature on the effect of the international oil market on industrial output 
in China in terms of time-series and frequency-domain analyses. More specifically, 
related research mainly centers on the connectedness between oil prices and 
economic activity at the original data level in the time domain. Unfortunately, they 
ignore the relationship at different frequency bands (Chen et al., 2019). Second, 
in contrast to previous literature that examines the relationships, the time-varying 
price and volatility spillover effects between the global oil market and economic 
activity at various time scales are investigated. Because volatility is a measure 
of risk, identifying the volatility transmissions has significant consequences for 
policymakers in predicting future market co-movements. Third, our study employs 
the wavelet cohesion method of Rua (2013) and a novel approach to causality 
using a time-frequency approach introduced by Olayeni (2016), which may 
give robust findings. As a result, differing from previous works on oil prices and 
economic activity co-movement, our study provides straightforward insights into 
global policymakers and risk managers. Traditional approaches do not allow the 
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estimation of continuous changes in the lead-lag nexus between indicators, nor 
allow for the interrelatedness of short- and long-run investment strategies. Using 
Olayeni’s (2016) approach, we can examine non-linearities, structural breaks, 
and different lead-lag scenarios between global oil prices and economic activity 
in China. Therefore, this research would add to the body of knowledge in the 
literature about spillover effects between crude oil prices and economic growth in 
China over time scales.

LITERATURE REVIEW 

Theoretical Linkages

Oil prices can affect economic activity via a variety of transmission channels. First, 
there is the classic supply-side effect, which states that rising oil prices indicate 
the reduced availability of a basic input to production, resulting in a decrease in 
potential output (Hamilton, 1983; Jo, 2014; Yıldırım & Öztürk, 2014). The result 
is a rise in production costs and a slowing output and productivity growth. Second, 
increased oil prices result in income transfers from importing to exporting nations. 
It alters the international trade balance and exchange rates. Net oil importers 
typically experience a deterioration in their balance of payments, which exerts 
downward pressure on exchange rates, assuming all other factors remain constant 
(Cuñado & de Gracia, 2003; Eryiğit, 2012). Third, according to the real balance 
effect, a rise in oil prices would increase the demand for money. There is a rise in 
interest rates and a deceleration in economic growth as a result of the failure of 
monetary authorities to meet rising money demand with increased supply. Fourth, 
higher oil prices have a restrictive effect on the supply side. As oil is an input in 
the production process, rising input costs result in decreased profits for producers 
(Lardic & Mignon, 2008). Therefore, decreased investment spending may result 
from decreased profits. Fifth, an increase in oil prices could have a negative impact 
on consumption, investment, and stock prices. Consumption is influenced by its 
positive relationship with disposable income, while investment is affected by 
rising firm costs. An alternative explanation offered in the literature is that it is the 
monetary policy response to the oil price shock that reduces economic activity, 
not the increase in oil prices. Because of these factors, oil prices can have an 
effect on economic activity. Based on the arguments mentioned above, oil prices 
significantly impact economic activity across countries. Therefore, we make the 
following testable hypothesis:

H1: Oil prices have a negative impact on economic activity in China.
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Empirical Literature

The literature on the interaction between oil markets and industrial output can be 
divided into the following two aspects: the divergent case of developing countries 
and developed countries; and the methodologies used for the analysis of global 
oil prices and economic activity. The early studies included Hamilton (2011), 
Hooker (1996), Kilian and Vigfusson (2011), and Santini (1985), all of which 
documented and explained the nonlinear nexus between oil prices and aggregate 
economic activity. The negative relationship between oil price uncertainty shock 
and economic activity has been revealed in many empirical studies (Cobo-Reyes 
& Quiros, 2005; Cuñado & Gracia, 2003; Eryiğit, 2012; Hamilton, 1983; Jo, 2014; 
Yıldırım & Öztürk, 2014). Taspinar et al. (2015) confirms that crude oil changes 
impact Turkey’s industrial production, known as a net oil importer country. In the 
Pakistan context, Ahmed et al. (2017) show that, to some extent, oil price shocks 
have a negative influence on industrial production. They also put forward that this 
association is used to predict oil future prices that can assist in taking precautionary 
steps to control economic activity.

About how crude oil prices interact with economic activity in the non-linear 
relationship is as follows. Huang et al. (2005) use the multivariate threshold model 
to examine the influence of crude oil price shocks on economic activity in the US, 
Canada, and Japan and find that the oil price change or its variation has a limited 
influence on the economies. Mehrara and Sarem (2009) report on the effects of oil 
price shocks on industrial production in three oil-exporting countries (Indonesia, 
Saudi Arabia, and Iran), concluding that the causal relationship between the oil 
market and economic activity in these countries is significant when asymmetric 
methods are used. Herrera et al. (2011) carry out the three leading techniques of 
asymmetric and possibly non-linear feedback from the oil prices to the US industrial 
production and find that the non-linear model is most robust for samples starting 
before 1973. Yıldırım and Öztürk (2014) examine the causal relationship between 
oil price and industrial production index for G7 countries and provide evidence 
that the oil price shocks might affect the industrial production of the net energy 
importing countries. Sakashita and Yoshizaki (2016) examine the impact of oil 
price shock on industrial production in five emerging countries, showing that oil 
price shocks on the industrial production index in emerging nations react to where 
the changes come from. Similarly, Scholtens and Yurtsever (2012), considering 
European countries, examine the effects of oil price shocks on 38 industrial 
production indices. They reveal that the impact of oil price shocks radically differs 
along with the various industries. Awartani et al. (2020) find robust results that 
growth in Middle East and North Africa (MENA) nations is connected with oil 
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prices because it benefits from higher oil prices, and it gets hurt by a fall in the oil 
market.

In addition to this issue, a number of scholars have recently expressed an interest 
in the quality of official Chinese data. Cross and Nguyen (2017) use a class of 
time-varying Bayesian vector autoregressive models to capture the nexus between 
China’s economic growth and the global oil market. Tang et al. (2010) employ a 
structural vector autoregressive model to answer how oil price shocks influence 
China’s economy. They argue that an oil price rise negatively impacts economic 
activity in China. He (2020) finds a significant non-linear Granger causality 
association run from oil price to Chinese investor sentiment. Chen et al. (2020) 
report that an increase in oil prices caused by oil supply shocks has negative 
influences on economic activity in China. Specifically, according to Chen et al. 
(2020), the effects of oil price shocks on output upstream to downstream in the 
industrial oil chain are time-varying, and the dynamic affects shift in China’s 
economy at varied lag lengths. 

As for the methodologies to explore the interrelatedness between crude oil prices 
and economic activity, most previous researchers use the conventional linear 
Granger test, vector autoregression (VAR), vector error correction model (VECM) 
(Cobo-Reyes & Quiros, 2005; Eryiğit, 2012; Jo, 2014; Mehrara & Sarem, 2009; 
Yıldırım & Öztürk, 2014), vector autoregression-generalised autoregressive 
conditional heteroskedasticity (VAR-GARCH) (Elder, 2018), structural vector 
autoregression (SVAR) model (Chen et al., 2020; Herrera et al., 2011), and 
dynamic conditional correlation (He, 2020) are also applied to measure the nexus 
between the two variables. 

Recently, several scholars used a wavelet technique to assess the co-movement 
between the global oil market and industrial output. For example, Dong et al. 
(2019) investigate the dynamic connectedness between global economic activity 
and crude oil prices using the wavelet approach. They uncover that the correlation 
between crude oil prices and global economic activity is significant at high 
frequencies, and it depends on the time scale. In a similar fashion, Aloui et al. 
(2018) suggest that the dynamic relationship between the oil market and industrial 
output in Saudi Arabia evolves through time and frequency. The results also show 
strong but non-homogeneous correlations between the two variables. Benhmad 
(2013) unveils that crude oil prices are leading the economic activity by three 
quarters and lagging the US business cycle. 

Given the conclusion in the existing literature and the significant intercorrelation 
between oil prices and economic activity, understanding their inner nexus seems 
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crucial.  In this paper, we examine the time-varying spillover effects between crude 
oil, oil future prices, and economic activity in China from a multiscale perspective, 
making up for the shortcomings of the above methods. Besides, the VAR-GARCH-
BEKK model is used to successfully capture the price and volatility spillover 
effects between oil markets and economic activity at various time horizons.

METHODOLOGY AND DATA

The Continuous Wavelet Transform

The wavelet transform ( )xW s  is required by estimating a definite wavelet (.)ψ  

against the time series 2( ) ( )x t L R∈  for both frequency and time. 

*1( ) ( )x
tW s x t
ss

ψ
∞

−∞

 =  
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                                            (1)

The significant property of the continuous wavelet transform is the capacity 

to decompose and then recreate a time series 2( ) ( )x t L R∈ . The asterisk (*) 
represents the complex conjugate in which the wavelet can detect higher or lower 

elements of the ( )x t .

Discrete Wavelet Transform

The time sequence ( )y t  can be decomposed into different scales:

, , , , 1, 1, 1, 1,( ) ( ) ( ) ( ) ( )J k J k J k J k J k J k k k
k k k k

y t s t d t d t d tφ ψ ψ ψ− −= + + + +∑ ∑ ∑ ∑

	           (2)

where the mother wavelet function is ψ  and father wavelet function is φ . The 

smooth (low frequency) ( )Js t   is parts of a signal and detail (high frequency) 

( )Jd t  is elements. We can rewrite the y(t) as follows:

		  1 1( ) ( ) ( ) ( ) ( )j j Jy t S t D t D t D t−= + + + + 	                        (3)
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where the smooth signal is the highest-level approximation Sj (t), and associated 

with oscillations of lengths 2–4, 4–8, …,  2j + 2j+i is 1 2( ), ( ),..., ( )jD t D t D t , 
respectively. In this paper, monthly data is used, and we establish J = 4 for multi-
resolution level J because previous works demonstrated that a moderate filter was 
appropriate for financial data (Reboredo et al., 2017; Chen et al., 2019; Hung, 
2020).

Wavelet Coherence

To analyse the relationship between the two variables, we illustrate a bivariate 
structure termed as wavelet coherence. The cross-wavelet of two sequence x(t) and  
y(t) can be defined as:

*( , ) ( , ) ( , )XY X Y
n n nW u s W u s W u s= 			                (4)

where u denotes the position, s is the scale, and * denotes the complex conjugate. 
The squared wavelet coefficient is defined as:

		           (5)

where S is a smoothing mechanism. R2(u,s) is in the range of squared wavelet 

coherence coefficient 20 ( , ) 1R u s≤ ≤ , which is analogous to correlation 
coefficient.

Wavelet Correlation 

To provide the background for the casual association between variables, the Rua 
(2013) wavelet correlation measure is given by:
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where ( )( ) ( )scale timeQ Qξ ξ ξ=  with scaleξ  as the smoothing operator along scale 

axis, while timeξ  as the smoothing operator along the time axis. As a traditional 

correlation analysis, ( , )XY sρ τ  is bounded from −1 to +1.

Causality in Continuous Wavelet Transform

The continuous wavelet transforms for the Granger causality developed by Olayeni 
(2016) is employed, which extends the continuous wavelet transform (CWT)-
based correlation measure by Rua (2013). It can be written as:
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where ( , )m
YW s τ , ( , )m

XW s τ  and ( , )m
XYW s τ  are the wavelet transformations and 

( , )Y XI s τ→  as the indicator function which is defined as:

1, ( , ) (0, / 2) ( , / 2)
( , )

0,
XY

Y X

if s
I s
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φ τ π π π

τ→

∈ ∪ − −
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                                    (8)

Wavelet-based VAR-GARCH-BEKK Model

To specify the price and volatility effects throughout different wavelet scales, we 
utilise the bivariate VAR-GARCH-BEKK model developed by Engle and Kroner 
(1995) which can explore the direction of spillover effects between two time series. 
The VAR-GARCH-BEKK model is written as:

          t t 1 tR R u−= αΓ + 	                                                               (9)

( )u N 0,Ht t 1 t+-X                                                         (10)

where t 1,t 2,tR R ,R =   denotes a vector of industrial production index (IPI) 
and oil market prices, the vector of the constant is A which presents 2×2 vector.
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t 1,t 2,tu , = ε ε   is bivariate and a conditional normal distribution, which is the 

residual vector,. t 1−Ω  is the market information set available at time t 1− . tH
shows the conditional covariance matrix and is a function of lagged cross products 
of errors. The lag selection is reported in Appendix. The covariance matrix 

11 12
ij,t

21 22

h h
H

h h
 
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 

is for bivariate GARCH model, its BEKK model as follows:

                                     ' ' ' '
t 11 t 1H C C A A B H B−= + εε +                                                             (11)
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where C is the 2×2 upper triangular matrices. ARCH effect of volatility is 
explained by bivariate GARCH model, the element of a ij shows the effect of 
market i volatility on market j, while GARCH effect of volatility is demonstrated 
by bivariate GARCH model, the component of b ij indicates the existence of 
volatility spillover between market i and market j. 

Data 

This study aims to identify the influence of the global oil market on the industrial 
output in China. The data sets selected for this research consist of monthly data 
of oil price (OIL), oil future price (OILF), and industrial production index (IPI) 
measures for economic activity in the case of China (Raza et al., 2018). The 
monthly data were collected from January 1999 to September 2019 from the 
Bloomberg database and yielding 250 observations. Due to the data availability 
of IPI, all variables are from January 1999. Additionally, our sample ends in 
September 2019 due to the commodities complex’s recent high level of volatility 
on the global financial markets (COVID-19 outbreak). This uncertainty may 
cause sample heterogeneity in our analysis because of the drastic changes in oil 
production that the Organization of the Petroleum Exporting Countries (OPEC) 

(12)
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and its allies have made (discipline in output reduction) (Lee et al., 2021). The 
data is transformed into natural logarithm form. Table 1 represents the underlying 
statistical parameters of the said financial time series.

The mean value of OIL, OILF, and IPI is positive during the period. The skewness 
and kurtosis coefficients appear to be a departure from the normal distribution; 
the Jarque-Bera test officially confirms this. Furthermore, the augmented Dickey–
Fuller (ADF) test suggests that all series are stationary at level (I(0)) at the 1% 
significance level, and autoregressive conditional heteroskedasticity-Lagrange 
multiplier (ARCH-LM) confirms the existence of the ARCH effect in the oil 
prices, oil future prices, and industrial production index. Therefore, these findings 
are appropriate for further statistical analysis.

Table 1
Descriptive statistics of monthly returns of the IPI, OIL, and OILF markets

Mean Std. dev Skewness Kurtosis Jarque-Bera ADF ARCH-LM

IPI 4.637869  0.058122  0.272899  2.510987 5.571677*** −3.536716*** 159.3294***

OIL 3.882371 0.488474 −0.696365  2.510987 20.13558*** −5.628101*** 237.6865***

OILF 3.898679  0.462319 −0.556088  2.553510 14.90151*** −5.288664*** 241.9262***

Note: ***denotes significance at 1%

EMPIRICAL RESULTS

Multiscale Analysis

The original time series was decomposed using the maximum overlap discrete 
wavelet transform (MODWT). Oil, oil future prices, and industrial production data 
are decomposed into a series of four-time scales (D1, D2, D3, and D4) that display 
detailed information about the raw data, as well as an S4 (above 32 months) trend 
element. The wavelet scale is shown in Table 2 for further information.

Table 2
Corresponding relationship between time and scale

Detail Wavelet scale Frequency (month)
D1 1 2−4
D2 4 4−8
D3 8 8−16
D4 16 16−32
S4 >16 Above 32
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Figure 1 shows the related variable fluctuations based on the CWT. The yellow 
island at the bottom (top) of the CWT illustrates significant change at low (high) 
frequencies while the yellow area on the left-hand side (right-hand side) depicts 
substantial variation at the beginning (end) of the sample period, and regions in 
blue show weak fluctuation or low intensity between indicators. In other words, 
oil markets and economic activity experience significant volatility at the 5% 
significant level.

 

Figure 1. CWT power spectra of OIL, OILF, and IPI

The CWT between two-time series in a pairwise manner is summarised in Figure 2. 
The CWT reflects the local covariance between OIL, OILF, and IPI series at different 
scales and periods. It is clear that the covariance for all such pairs has dramatically 
increased with scales. The vertical axis demonstrates the interdependence between 
the two variables under analysis impacted by medium- to long-term variations than 
short-term innovations. In this figure, we can also conclude concerning the phase 
(the arrows). Information in connection with phase difference infers that the nexus 
among concerned variables was not homogeneous across scales because arrows 
point up and right, down and up constantly.

 

Figure 2. CWT for OIL, OILF, and IPI
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Figure 3 allows us to look at the estimated wavelet coherence and phase difference 
between IPI and oil prices in China. The yellow island at the bottom (top) of the 
wavelet coherence indicates strong interplay at low (high) frequencies, whereas the 
yellow region on the left (right) side indicates a significant correlation at the start 
(end) of the sample period. The colour codes represent the degree of correlation 
between the variables under examination. The yellow regions present that two 
series exhibit strong relationship, while blue color areas present that two series are 
weakly connected. Furthermore, the wavelet coherence effectively performs zones 
in different time and scales where each pair of series is significantly dependent on 
the other, or vice versa.

Wavelet coherence plots suggest that OIL and OILF prices were lagging industrial 
production index in China in very special episodes in history, while the highest and 
spreader effect for almost frequencies was especially changed during the global 
financial crisis 2007−2008. In 2008−2013, the bidirectional causal relationship 
was found between IPI and OIL as well as IPI and OILF in China.

 

Figure 3. Wavelet coherence of OIL, OILF, and IPI

Directions of arrows were not identical throughout the plots for respective time 
series pairs. The existence of in-phase and out-phase interactions suggesting the 
positive and negative relationship is thus clearly visible. Overall, based on the 
wavelet coherence analysis, the outcome unveils that oil and oil future prices 
have a weak impact on IPI in the short term and medium run, while the strong 
bidirectional association between OIL and IPI in the long run. These results support 
Raza et al. (2018), who confirm that there is a bidirectional connection between 
crude oil prices and industrial production index in the US. 

Figure 4 describes the time and frequency causality and correlation between 
oil prices and economic activity in China. The plots at the bottom refer to the 
correlations between the two variables (Rua, 2013). We can observe that oil 
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prices have a stronger relationship with economic activity compared to oil future 
market. High positive correlations occur within the cone of influence in the period 
of 2008−2014 in the low and medium term. Other than these small patches, the 
relationship between the two variables is negative in the long run. As shown in 
Figure 4, it is evident that at the high frequency the co-movement between oil prices 
and economic activity experienced increasing trend, especially after the global 
financial crisis 2008. Additionally, it reached its peak in 2010. Specifically, in the 
low frequency indicates that the co-movement attained its peak in 2013. Therefore, 
our results match the observed behaviour between oil prices and economic activity. 
This outcome not only indicates the nature of the factors responsible for the causal 
association but also the historical growth of such a connection. 

At the next stage, time-frequency price and volatility spillover effects between 
economic activity and oil markets are conducted. More specifically, we use the 
VAR-GARCH-BEKK model based on each wavelet scale. 

Figure 4. Wavelet-based causality and wavelet-based correlations Rua (2013) between 
OIL and IPI

Spillover Effects

Price spillover

First, we take into account the mean spillovers between oil markets and IPI in 
China at each wavelet scale. As shown in Tables 3−6, we can observe that OIL, 
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OILF, and IPI are all impacted by their own lagged values throughout different time 
scales because of the significant coefficients of μ11 and μ22. These coefficients are 
both negative and positive at different scales, which means that the connectedness 
direction between OIL, OILF, and IPI changes in different time and frequencies. 
Therefore, it is crucial to differentiate a negative or positive relatedness, which 
allows market participants to modify strategies promptly to keep away from 
market risk, these findings tally with the previous studies (Ahmed et al., 2017; 
Hung, 2021; Taspinar et al., 2015). Second, OIL, OILF prices, and IPI are not 
only influenced by their own lagged values but are also impacted by the IPI/OIL 
markets. From the price spillover perspective, the price spillovers between OIL, 
OILF, and IPI in China are unidirectional linkages or there is no relationship. We 
summarise the outcomes of the price spillover effects between OIL, OILF, and IPI 
in Table 7.

Volatility spillover

We now consider volatility spillovers between three indices during the four wavelet 
scales. Tables 3−6 report the results of the conditional variance and residual, gained 
from the estimation of the VAR-GARCH-BEKK model. The diagonal components 
measure the own ARCH effects in matrix A, while the diagonal components of 
matrix B measure the own GARCH effects. Throughout the visual inspection of 
these tables, the coefficients of a11, a22 are significant at all the wavelet scales, 
which reveal the existence of the ARCH effect. Put another way, the higher levels 
of conditional variance of IPI prices and oil markets are influenced by their own 
past innovations. Similarly, b11 and b22 coefficients are also statistically significant 
for all cases, which suggests the persistence of GARCH effects. This implies that 
their own past conditional variance considerably impacts the current conditional 
variance of OIL, OILF, and IPI.

Table 3
Estimation results of the VAR- BEKK-GARCH model for scale D1

IPI-OIL IPI-OILF

Mean equation
μ11 −0.448898498***  

(0.048669130)     
−0.366308352***  
(0.033664458)

μ12 0.044861589***

(0.006467346)
0.069932487***  
(0.005564781)     

μ1 −0.000120311
(0.000092924)

−0.000174823* 
(0.000091884)

μ21 −0.041066265***

(0.017646601)
0.021848816  

(0.020949666)
(Continued on next page)
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Table 3: (Continued)
IPI-OIL IPI-OILF

μ22 −0.353720564***  
(0.062971666)

−0.228104770***   
(0.063907866)

μ0 −0.000111331  
(0.000085768)

−0.000154110  
(0.000140638)

Variance equation
c11 0.000687563***    

(0.000172201)
0.000952149*** 
(0.000170638)

c21 −0.000552908**  
(0.000327866)

−0.000667217  
(0.000508602)

c22 0.001070115***   
(0.000263483)

0.001827666***

(0.000256031)
a11 1.09349879 ***   

(0.112605036)
1.286409337*** 
(0.095096702)

a12 −0.050993744 
(0.044920006)

0.002800196  
(0.046434258)

a21 −0.047471040**  
(0.021147082)

0.031870450*  
(0.018884296)

a22 1.197769715***    
(0.106191515)

1.078166254***  
(0.093926143)

b11 0.707040109***    
(0.047498339)

−0.59015193***

(0.041449859)
b12 0.049627678*   

(0.021137319)
0.094387850** 
(0.046338491)

b21 0.010816181  
(0.009350726)      

–0.019718000  
(0.015564895)

b22 0.525050755***  
(0.041663279)

0.372994630*** 
(0.102516774)

ARCH-LM 40.00 [0.68345] 47.17[0.38394]
Note: *, **, *** indicate significant levels at 10%, 5%, and 1% respectively; standard errors  
are represented in parentheses; p-values are given in brackets

Table 4
Estimation results of the VAR- BEKK-GARCH model for scale D2

IPI-OIL IPI-OILF
Mean equation
μ11 0.518566982*** 

(0.046943905)
0.518185246***

(0.043634619)
μ12 0.040244849***

(0.002682514)  
0.044882362***

(0.002637266)
(Continued on next page)
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Table 4: (Continued)
IPI-OIL IPI-OILF

μ1 0.000124677
(0.000182765)

0.000219229  
(0.000188489)

μ21 0.035416855*** 
(0.013276275)

−0.043522231
(0.019157357)

μ22 0.607119028*** 
(0.039719295)

0.680602059***

(0.049920858)
μ0 0.000024453  

(0.000120293)
0.000045894

(0.000118764)
Variance equation
c11 0.001358977***

(0.000189098)
0.001521860*** 
(0.000259334)

c21 −0.000134689  
(0.000139934)

0.000061347
(0.000179649)

c22 −0.000780290***

(0.000144889)
−0.000775699***  
(0.000137815)

a11 1.015874409 ***  
(0.077850760)

1.088362430***

(0.084398505)
a12 −0.037191265  

(0.030147920)
0.024391244  

(0.042603285)      
a21 0.029704505***   

(0.005975333)
0.029868925*** 
(0.010088568)

a22 0.875080923***   
(0.061205892)

0.884811615***  
(0.064172600)

b11 0.608378699***

(0.037156110)
0.555260735***  
(0.045512865)

b12 0.021934752  
(0.013627481)

−0.024154996  
(0.026409400)

b21 0.015302492***

(0.003951402)
0.018899171***  
(0.006686389)

b22 0.687303166***  
(0.026288098)

0.695585285***  
(0.025109564)

ARCH-LM 15.24[0.9245] 15.133 [0.9121]
Note: *, **, *** indicate significant levels at 10%, 5%, and 1% respectively; standard errors 
 are represented in parentheses; p-values are given in brackets.  
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Table 5
Estimation results of the VAR- BEKK-GARCH model for scale D3

IPI-OIL IPI-OILF
Mean equation
μ11 0.847053561***  

(0.024875486)
0.847053561***   
(0.024875486) 

μ12 −0.009051186***

(0.002039049) 
−0.009051186  
(0.002039049)

μ1 0.000215859  
(0.000221063)

0.000215859***    
(0.000221063)

μ21 0.001743164
(0.013634848)

0.001743164  
(0.013634848)

μ22 0.873749242***

(0.039827772)
0.873749242***  
(0.039827772)

μ0 −0.000015880  
(0.000106483)

−0.000015880  
(0.000106483)

Variance equation
c11 0.000610277***    

(0.000161633)
0.000610277***   
(0.000161633)

c21 0.000241089***    
(0.00009119)

0.000241089***   
(0.000091194)

c22 0.000000009  
(0.000404680)

0.000000009  
(0.000404680)

a11 0.913314228***    
(0.063852955)

0.913314228***   
(0.063852955)

a12 −0.004885134  
(0.016793970)

−0.004885134  
(0.016793970)

a21 0.005863565**  
(0.003089380)

0.005863565*  
(0.003089380)

a22 0.909536568***    
(0.056405613)

0.909536568***   
(0.056405613)

b11 −0.591482393***   
(0.037433914)

−0.591482393***   
(0.037433914)

b12 −0.034093236  
(0.066862200)

−0.034093236  
(0.066862200)

b21 −0.028454172***    
(0.003516070)

−0.028454172***   
(0.003516070)

b22 0.602471602***  
(0.029431372)

0.602471602***   
(0.029431372)

ARCH-LM 21.73[0.4570] 21.68 [0.4101]
Note: *, **, *** indicate significant levels at 10%, 5% and 1% respectively. Standard errors 
are represented in parentheses. p-values are given in brackets.  
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Table 6
Estimation results of the VAR- BEKK-GARCH model for scale D4

IPI-OIL IPI-OILF
Mean equation
μ11 0.972848940*** 

(0.015752435)
1.007637934***  
(0.015285095)

μ12 −0.005731106***  
 (0.001237165)

−0.00706423***  
(0.001113413)

μ1 −0.000092044  
(0.000282653)

−0.000095793  
(0.000327141)

μ21 −0.002337637***  
(0.006983315)

0.014278553***

(0.003212550)
μ22 1.052353945***  

(0.006983315)
0.987527495***  
(0.004301925)

μ0 0.000030939  
(0.000076017)

−0.000276765***  
(0.000114915)

Variance equation
c11 0.000718763***  

(0.000100381)
0.000471126***

(0.000094028)
c21 −0.000169842***  

(0.000045866)
−0.000263185***  
(0.000052419)

c22 −0.000108341 *** 
(0.000038088)

0.000000142  
(0.000127027)

a11 1.105972841 *** 
(0.062911986)

0.001356544*** 
(0.057301350)

a12 0.003272195  
(0.004801787)

0.001356544  
(0.005770495)

a21 −0.004625545  
(0.002920415)

−0.002671395  
(0.003428786)

a22 1.245060705 *** 
(0.068871419)

0.995256212***  
(0.054345582)

b11 0.423859872 *** 
(0.032304624)

0.455865669***  
(0.035997301)

b12 −0.006516530 *
(0.002786461)

−0.035412834***  
(0.003139069)

b21 0.000889637  
(0.002540779)

0.004778980  
(0.003139069)

b22 0.450572928*** 
(0.026421298)

−0.329803914***  
(0.037550622)

ARCH-LM 77.77 [0.1405] 78.77 [0.1370]
Note: *, **, *** indicate significant levels at 10%, 5%, and 1% respectively; standard errors  
are represented in parentheses; p-values are given in brackets.  
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Table 7
Mean and volatility spillovers between industrial production index and oil prices

IPI-OILF IPI-OIL
Mean spillover
D1 OILF → IPI OIL → IPI
D2 IPP → OILF IPI → OIL
D3 OILF → IPI OIL → IPI
D4 NO NO
Volatility spillover 
D1 IPI → OILF IPI → OIL
D2 OIL → IPI OILF → IPI
D3 OIL → IPI OILF → IPI
D4 IPI → OIL IPI → OIL

Note: The symbols → represents the direction of shock and volatility spillovers from OIL/OILF  
to IPI and vice versa. “NO” means there are no shock and volatility spillovers between the two series. 

Let us take into consideration the off-diagonal components of matrices A and B, 
these parameters show the volatility spillovers across various time series. The 
outcomes of the significant coefficients of a12, a21, b12, and b21 illustrate that the 
interdependence between OIL, OILF, and IPI in China changes across various 
time scales. It is clear that there exist unidirectional and bidirectional volatility 
spillovers or non-persistent volatility spillovers between oil markets and the 
industrial production index in China. For example, the parameter estimates of 
a12 are not statistically significant for the cases of IPI-OIL at scale D1, IPI-OILF 
at scale D4, which means that the past shocks of the IPI in China do not affect 
the present volatility of oil and oil future prices. In the opposite direction, a21 
coefficients are statistically significant at scale D2, D3, and D4. This implies that 
the past shocks of the oil markets have a significant influence on the conditional 
volatility of the industrial production index in China. Regarding the GARCH 
effects, b12 coefficients are statistically significant at scale D1 and D4, which shows 
the unidirectional volatility spillovers from IPI to OIL, while coefficients of b21 are 
significant at scale D2 and D3. This finding demonstrates that there is a bidirectional 
volatility spillover between IPI and oil prices at wavelet scale D2, and unidirectional 
volatility spillovers from oil, oil future prices to the industrial production index in 
China. Table 7 reports all the volatility spillover effects between IPI and oil prices 
at different wavelet time scales.

The findings in Tables 3−6 vividly depict the persistence, strength, and direction of 
spillover effects between the variables under investigation. We use the multivariate 
ARCH-LM test on the residuals of each model to determine whether the ARCH 
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effect is still present in the model (Hung, 2019). The results show that there is no 
problem with the ARCH effect, implying that the VAR-GARCH-BEKK model 
is appropriate. As a result, modeling the VAR-GARCH-BEKK model accurately 
captures the mean and volatility spillovers between oil markets and Chinese 
economic activity.

In the model computation, hypothesis H1 was found to be statistically significant, 
which means that oil price shocks have a negative impact on economic activity in 
China in the short and medium runs.

Further Analysis 

Several scholars have examined the asymmetric interaction between economic 
indicators using asymmetric causality tests of Hatemi (2012). To further estimate 
the non-linear nexus between economic activity and oil prices in China, we 
utilise the causality tests developed by Hatemi (2012), which is a robust model 
for investigating the causal relationship between two-time series. The model has 
been used in some recent works (Baz et al., 2020; Shahbaz et al., 2017; Tugcu 
et al., 2012). The results are documented in Table 8. With regard to asymmetric 
causality, Table 8 shows the causal links running from IPI to OIL and OILF at D0, 
D1, D3, and D4 levels. In addition, there exist causal linkages running from OIL to 
IPI at D2. However, Table 8 also reports that there are no causal linkages between 
OIL, OILF, and IPI in the short, medium, and long run. It is true in the case of the 
D0 level. In general, our findings reinforce the existing literature in highlighting 
that the selected variables under consideration connect in a nonlinear manner. We 
also show strong evidence to support the hypotheses that changes in the causing 
variables are significant for detecting the true causality associations hidden behind 
the variables’ fundamental causality dynamics.

Table 8
Results for asymmetric causality 

Causality Wald test CV at 1% CV at 5% CV at 10% Causal 
D0

IPI+ → OIL+ 2.161 7.275 5.241 1.145 Yes

IPI– → OIL– 0.566 12.540 5.697 2.374 No

OIL+ → IPI+ 2.005 6.244 5.006 2.571 No

OIL– → IPI– 1.410 38.215 17.364 14.025 No

IPI+ → OILF+ 8.056 13.214 8.870 8.557 No

IPI– → OILF– 2.780 19.214 15.299 11.674 No

(Continued on next page)
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Table 8: (Continued)
Causality Wald test CV at 1% CV at 5% CV at 10% Causal 

OILF+ → IPI– 4.528 11.021 6.354 5.606 No

OILF– → IPI– 3.501 9.677 4.657 3.914 No
D1

IPI+ → OIL+ 0.484 15.94 2.780 1.907 No

IPI– → OIL– 2.003 69.970 8.561 1.078 Yes

OIL+ → IPI+ 2.007 10.547 8.664 8.024 No

OIL– → IPI– 6.180 25.360 18.114 14.072 No

IPI+ → OILF+ 0.506 5.210 2.770 2.013 No

IPI– → OILF– 5.255 10.306 4.528 2.588 Yes

OILF+ → IPI– 0.483 5.046 2.251 1.072 No

OILF– → IPI– 1.716 8.883 5.504 4.054 No
D2

IPI+ → OIL+ 0.776 14.507 8.985 8.261 No

IPI– → OIL– 1.257 9.006 5.217 3.674 No

OIL+ → IPI+ 0.815 9.756 7.521 3.458 No

OIL– → IPI– 2.417 6.331 3.214 2.017 Yes

IPI+ → OILF+ 0.656 2.901 1.833 1.021 No

IPI– → OILF– 1.025 8.664 5.204 3.331 No

OILF+ → IPI– 0.948 2.775 2.024 1.541 No

OILF– → IPI– 0.05 5.344 2.078 1.704 No
D3

IPI+ → OIL+ 6.777 133.047 26.451 22.0178 No

IPI– → OIL– 5.215 128.601 22.394 14.007 No

OIL+ → IPI+ 0.114 118.214 35.467 30.014 No

OIL– → IPI– 0.225 58.039 41.101 16.394 No

IPI+ → OILF+ 9.950 14.033 2.610 2.034 Yes

IPI– → OILF– 2.660 17.228 8.271 3.220 No

OILF+ → IPI– 0.726 11.240 2.550 1.757 No

OILF– → IPI– 0.029 6.503 2.666 1.920 No
D4

IPI+ → OIL+ 5.687 7.007 2.877 2.630 Yes

IPI– → OIL– 2.141 3.339 1.927 1.115 Yes

OIL+ → IPI+ 5.579 8.597 3.667 2.048 Yes

OIL– → IPI– 2.201 15.247 9.372 6.258 No

(Continued on next page)
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Table 8: (Continued)
Causality Wald test CV at 1% CV at 5% CV at 10% Causal 
IPI+ → OILF+ 6.034 6.701 4.222 4.015 Yes

IPI– → OILF– 3.547 33.609 12.417 5.630 No

OILF+ → IPI– 4.548 22.405 8.901 6.991 No

OILF– → IPI– 0.077 3.871 2.091 1.673 No

Note: D0 represents data without wavelet decomposition; CV presents the critical value; *, **, and *** presents 
significance levels at 10%, 5%, and 1%, respectively; the superscripts “+” and “−” denote positive and negative 
shocks, respectively

DISCUSSION

The price of crude oil has recently risen globally. China is one of the emerging 
countries experiencing rapid economic growth. Oil price increases pose a serious 
problem for oil-importing countries. This article is primarily concerned with oil 
prices and economic activity. We discover evidence of significant relationships 
between changes in oil prices and economic growth. Our findings back up the 
findings of Cross and Nguyen (2017) and Tang et al. (2010). In addition, there is 
evidence of volatility spillovers from changes in oil prices to economic growth, 
which supports the studies of Chen et al. (2020) and He (2020) that the effect of 
oil prices on economic activity varies over time. This information transmission 
between oil price and economic growth implies that a sudden increase in oil price 
increases the risk of reduced economic activity. Because China produces a small 
amount of crude oil, accurate information on oil prices is critical for economic 
activity.

Furthermore, the influences of global oil market shocks on economic activity in 
China at different time and frequencies are statistically significant, which implies 
that oil demand shocks are the key determinant that impacts industries’ output. The 
valuable information provided by these outcomes supports several divergences in 
the short, medium, and long-term nexus between oil prices and economic activity 
in China in terms of the leadership, causality, price, and volatility effects, which 
provides vital implications for institutional investors and policymakers in this 
country. Our findings are consistent with Aloui et al. (2018), Benhmad (2013), 
Chen et al. (2021), and Cross and Nguyen (2017).
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CONCLUSION

For the first time, this article integrates the wavelet transform approach and 
multivariate GARCH model to analyse the co-movements and volatility spillover 
effects between oil, oil future prices, and the industrial production index in China 
at different time horizons throughout 1999−2019. By doing so, we model and 
propose a multiscale analysis framework. We first capture the causal association 
between global oil markets and industrial output in China utilising the wavelet 
transform frameworks. This novel method enables the decomposition of time-
series at various time and frequencies based on short-run, medium-run, and long-
run. Unlike the present literature on the oil-output relationship, which focuses on a 
higher frequency, such as yearly and quarterly data, monthly data is employed. The 
Wavelet-Granger causality test developed by Olayeni (2016) is used to quantify 
the strength and direction of causal links over time and across multiple frequencies 
at the same time. We further implement an analysis of price and volatility spillover 
effects between the variables by incorporating the VAR-GARCH-BEKK model 
into the MODWT method to determine the direction of risk transmission between 
oil markets and the industrial production index in China at each wavelet scale.

The empirical findings of the cointegration analyses indicate a significant long-run 
interconnectedness between oil, oil future prices, and Chinese economic activity. 
The empirical results of the wavelet transform approach confirm that oil and oil 
future prices have a significant impact on economic growth in the short-run and 
medium-run. More importantly, in the long run, there is a neutral effect between 
oil, oil future prices, and economic activity. Further, we find that the spillover 
effects between oil markets and economic activity in China are significantly 
time-varying and spread across various wavelet scales. The price and volatility 
spillover, unidirectional, and no relationships are found between oil markets and 
the industrial production index. Also, the volatility spillover effects mainly take 
place in the medium and long run. China lacks sufficient fossil fuel resources, and 
its economy is heavily reliant on crude oil imports from oil-producing countries. 
The country’s economic activity is reliant on imported crude oil, making it sensitive 
to oil price fluctuations (Taspinar et al., 2015). Given the link between oil prices 
and economic activity, it might be claimed that hedging oil price uncertainty is 
a critical determinant for China’s long-term industrial output sustainability and 
stability.
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Implications

The spillover effect heterogeneity between oil markets and economic activity in 
China has important implications for the government, policymakers, and other 
market participants. In the short- and medium-term, volatility transmissions were 
found between economic growth and oil prices in China. Hence, global investors or 
policymakers could take the variation of crude oil markets or IPI information into 
account. In the long run, there are bidirectional volatility spillovers between oil 
prices and economic activity in China, which should be considered by the Chinese 
government and policymakers to make the right decision. More precisely, because 
volatile oil prices appear to be having a negative impact on China’s economic 
growth, considering strategic oil reserve utilisation to mitigate the effect may be 
sufficient. This means selling it when prices are high and vice versa.

Since changes in oil prices have various effects on China’s economic activity, 
the authorities should take effective solutions based on the source of the oil price 
shocks. Firstly, policies aimed at stabilising inflation should take into account 
variations in the international economy, which means that the government needs 
to change its output model and increase demand for consumption. Secondly, 
China, as the world’s second-largest oil consumer and importer, should be aware 
of its significant reliance on oil imports and the resulting imported inflation. The 
Chinese government should limit the use of fossil fuels, reduce energy intensity, 
and increase energy efficiency to successfully combat inflation. Thirdly, in order to 
mitigate oil-specific demand innovations, the government should enhance market-
oriented energy pricing and, as soon as possible, establish an energy financial 
system and an open crude oil futures market. Furthermore, the price-control policy 
in China has to be changed. As a result of the increased inflationary pressure 
caused by increasing oil prices, the market mechanism must be improved, as well 
as the efficiency and fairness of the market price adjustment process, to decrease 
human-induced bias. More so, the Chinese authorities must consider industrial 
disparities in the effects of oil price shocks on economic growth when establishing 
anti-inflationary measures and adopt differentiated policies based on the fact that 
each industry responds differently to oil price shocks.

Future Research Directions

In line with the findings, we propose motivating future research directions to better 
understand the influence of oil prices on microeconomic indicators, particularly 
in emerging economies. More macroeconomic variables may improve the results 
and contribute to the relevant literature. Finally, we propose that the work should 
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be expanded by employing an advanced econometric framework such as the 
time-varying Granger causality developed by Shi et al. (2020) to explain these 
relationships fully. 
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APPENDIX 

The Optimal Lag Order Analysis

Lag selection criteria

Lag LogL LR FPE AIC SC HQ
0  887.7400 NA   1.30e-07 –7.342241 –7.298861 –7.324764
1  2295.827  2769.433  1.18e-12 –18.95292*  –18.7794* –18.88302
2  2305.570  18.91926  1.17e-12 –18.95909 –18.65543 –18.83675
3  2327.477  41.99564  1.05e-12 –19.06620 –18.63241  –18.89143*

4  2336.974  17.96981   1.05e-12*  –19.07032* –18.50639 –18.84313
Note: *represents lag order selected by the criterion; LR: sequential modified LR test statistic; FPE: Final 
prediction error; AIC: Akaike information criterion; SC: Schwarz information criterion; HQ: Hannan-Quinn 
information criterion


