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ABSTRACT

Post global financial crisis central banks worldwide have been crucially concerned 
about ensuring financial stability in any economy. Malaysia is not an exception where 
Bank Negara Malaysia has been playing a pivotal role in ensuring continuing safety 
and soundness of the financial system of the country. In the present paper, we assess 
the stability of domestic banks in the country using the Distance to Default (DTD). No 
such analytical study on Malaysian banking has so far been reported in the literature. 
Using the data of the financial performance of banks during the period 2001 to 2014, 
their stock price information on daily basis and the corresponding KLCI index, and 
the daily yield of Malaysian Government Securities, we compute and analyse the DTD 
of banks at the individual level and also assess the contribution of individual banks to 
systemic risk. We also assess the robustness of the framework by analysing the cases of two 
banks which were merged during the period 2001 to 2010. The findings of the study are 
expected generate extensive research interest in this arena and would also be beneficial 
to the investor population at large who would be keen in knowing the underpinning of the 
systemic stability in the country.
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INTRODUCTION

Ensuring financial stability has become the centerpiece of the regulatory mandates 
of the central banks worldwide after the global financial crisis had disastrous 
consequences on the financial system worldwide. Malaysia is not an exception. 
One may recall here that the word “Financial Stability” has been incorporated in 
the series of reports on “Financial Stability and Payment Systems Report” of the 
Bank Negara Malaysia (BNM) since 2007. In its report for the year 2015, BNM has 
stated that “Domestic financial stability is preserved and well-supported by sound 
institutions and orderly financial market conditions”. The report continued by 
stating that “Banks, in particular, have shown a high degree of earnings resilience 
in spite of more challenging business conditions, allowing them to maintain 
strong buffers through conservative earnings retention policies”. In the said report 
for the year 2017, BNM has stated that “the financial sector remains robust with 
sound financial institutions that have strong buffers to weather potential shocks 
under extreme stress scenarios”. Given the affirmation about the continuing 
confidence of the central bank on the health of banks, it may be of interest to the 
researchers and policy planners of the country and also the institutional investors 
and the other investor’s community at large to have a look at the path traversed 
by domestic banks in the country ever since 2000. It may be recalled here BNM 
had to force consolidation in the Malaysian domestic banking space in the year 
2000 to stave off the pressure of mounting non-performing loans in the books 
of domestic banks post-Asian financial crisis. In the present paper, we use the 
distance to default (DTD), a market-based indicator of corporate default risk, 
which is also used by financial authorities and regulatory agencies to monitor the 
risks of financial institutions (Harada & Ito, 2011), to assess the financial strengths 
of banks. The robustness of DTD in the prediction of rating downgrades of 
financial institutions in the emerging markets and developed economies has been 
reported in various empirical studies (Chan-Lau & Sy, 2007). Given the history 
of massive fiscal and social cost post-crisis, regulators have a natural concern and 
incentive to intervene quite in advance to prevent bank failure and have put in 
place the system of “Prompt-Corrective-Action”. Haldane and May (2011) argue 
that one of the major sources of systemic risk in the financial systems in the 
recent years is the rapid rise of “super-spreader institutions” which are too big, 
interconnected, and too important to fail.  The second source is the turmoil in the 
real economy and the resultant cycle of booms and bursts. The authors also argue 
that the regulatory prescription of higher capital and liquid assets requirement is 
aimed at strengthening the health and resilience of the financial system as a whole 
by limiting the scope for network spillovers. However, they suggest that greater 
emphasis needs to be given on the objective of systemic diversity. By using the 
quarterly data of 15 British banks for Q1 to Q4 during 2001 to 2012, Duan and 
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Zhang (2013) find that the systematic risk is positively and directly related to 
market-wide factors of risk. They also find that when the systematic risk is large, 
the systemic risk becomes significant. The authors also show that banks can be 
ranked according to their individual systemic risk contributions. 

Systemic risk was modelled by Acharya (2009) by asset correlations of 
various banks, and the author argues that in assessing systemic risk due regulatory 
attention needs to be paid on the endogenous choice of interbank contracts. 
Acharya, Pederson, Philippon and Richardson (2017) show that the propensity of 
undercapitalisation of individual financial institution in a situation when the entire 
system is undercapitalised, is the measure of its contribution to systemic risk.  
Blundell-Wignall, Atkinson and Roulet (2014) argue that interconnectedness risk 
resulting from changing models of the business of banks and their leverage are the 
core drivers of the global financial crisis. They also argue that in reforming Basel 
regulation, the Basel Committee on Banking Supervision (BCBS) continues to 
focus on complex models to control leverage of banks instead on the features of 
business models which have a strong independent effect on DTD.

The primary motivations of our paper are to assess whether the DTD 
framework can facilitate the assessment of systemic risk in the Malaysian banking 
system by capturing the underpinnings in the financial health of individual banks 
in Malaysia and their unique contribution to attenuate instability or to provide 
a counter-veiling force to maintain stability in the Malaysian banking system. 
Blundell-Wignall et al. (2014) argue that the regulatory policy is ultimately aimed 
at reducing bank risk.  In view of the regulatory forbearance and the complexity 
associated with the valuation of illiquid assets, it is difficult to assess the risk 
of default purely from the annual report data. The DTD measure combines the 
annual report data with market information to compute the default point at which 
the observable value of assets of a bank equals the book value of its debt.

LITERATURE SURVEY

Predicting Corporate Default

In the first seminal review paper, Altman and Saunders (1997) argued that in 
earlier years, most financial institutions primarily relied on the subjective analysis 
of various characteristics of borrowers like character, capacity, capital, and 
collateral, commonly known as 4 “Cs” in their credit-granting decisions. With 
the passage of time, financial institutions moved progressively towards a more 
objective-based assessment of credit risk of its prospective clients. They refer to 
the study of Somerville and Taffler (1995), who showed that a subjective approach 



Asish Saha et al. 

4

makes the bankers “overly pessimistic” in their assessment of credit risk in case 
of less-developed countries (LDCs). The multivariate credit scoring model, in 
which key accounting ratios are combined and assigned weights to generate a risk 
metric or a likelihood of measure of default, performs better than the so-called 
expert system. Altman and Saunders (1997) report that there are four variants 
of the multivariate models like the linear model, logit model, probit model, and 
the discriminant model. Of these models, discriminant approach dominated the 
literature followed by the logit model. In their study of prediction of bank failures 
during 1975–1976, Martin (1977) used both discriminant and logit model. A 
combination of the logit model and factor analysis was used by West (1985) to 
assess the financial health of financial institutions. It has been pointed out by 
Altman and Saunders (1997) that the parameters identified by logit model are 
akin to the components of the extant CAMEL model used by bank examiners in 
assessing the strength of banks. There are, however, three major criticisms of the 
multivariate models. First, the ratios are based on discrete accounting data and 
hence fail to capture the dynamic nature of the borrower characteristics which 
is better reflected in the data in the capital market. Second, linear models fail to 
forecast reality which is arguably non-linear in character. The third criticism is 
that the predictions of bankruptcy models are not based on very sound theoretical 
foundation unlike the “risk of ruin” models (Wilcox, 1973; Santomero & Visno, 
1977; Scott,1981). 

As reported by Altman and Saunders (1997), a separate class of models 
(Jonkhart, 1979; Littermann & Iben, 1991) aim to impute the implied probabilities 
of default from the yield spreads of the term structure between default free and risky 
corporate securities. In these models, the implied forward rates are computed on 
risky and risk-free bonds and are used to extract the expectations of the “markets” 
at different points of time in the future. Actuarial type default models based on 
past data on bond default across credit grades and remaining terms to maturity 
was developed by Altman (1989a, 1989b) and the “aging” approach by Asquith, 
Mullins and Wolff (1989). Rating agencies have adopted the modified mortality 
approach but it suffers from insufficiency of default data.

In the neural network approach (Coats & Fant, 1993; Trippi & Turban, 
1992), “hidden” correlations between the predictor variables are added as  
additional explanatory variables in a non-linear function of the prediction 
of bankruptcy. This approach is criticised because of its adhoc theoretical 
foundation and the manner in which it identifies the hidden correlation amongst 
the explanatory variables.

In the option pricing models proposed by Black and Scholes (1973), 
Merton (1974), and Hull and White (1995), the likely hood of default of a 
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company crucially depends on the  initial market value of its assets (A) relative 
to outside debt (B) and the volatility of the market value of its assets (σA). In 
this formulation, the equity of a company is assumed as a call option upon the 
implicit value of the company with the book value of the debt of the company 
as the strike price. Two crucial inputs in the KMV model are A and σA, both 
of which are to be estimated from the publicly traded firms with adequate data 
on stock returns. It is argued that given the initial values of assets (A) and the 
short-term debt outstanding (B) and the diffusion of asset values over time (σA), 
one can compute the expected default frequency (EDF) for each borrowing unit. 
Default occurs in a future period when the market value of a company’s asset 
falls below its outstanding short-term debt obligations. In reality, KMV uses an 
empirical estimate of the DTD assessment which is based on how many standard 
deviations asset values (A) are above B, and how much percentage of units that 
went bankrupt in a one-year time span with that many standard deviations of 
asset values above B. It is, however, of concern whether the volatility of the share 
price of a firm can be used as an accurate proxy of the implied volatility of the 
asset values of the firm and the efficacy of using a similar proxy for non-publicly 
traded companies. Bharat and Shumway (2008) examined the accuracy of the 
Merton (1974) DTD Model in forecasting bankruptcy and argued that the DD 
is a useful variable to forecast default but is not a sufficient statistic for default. 
They propose a naïve probability that captures both the functional form and the 
basic inputs proposed by Merton which outperforms the Merton Model. Jessen 
and Lando (2015) argue that despite simplifying assumptions, empirically DTD 
proved to be strong default predictor. The authors consider various deviations 
from the original Merton model like different dynamics of asset value, mechanism 
of default triggers, etc. and show that the ranking of default probabilities of firms 
using DTD is robust.

Default Studies in the Arena of Banking

Aspachs, Goodhart, Tsomocos and Zicehino (2007) argue that there is a need to 
develop a framework to measure financial fragility. The key component of the 
index of financial fragility proposed by the authors is the PD metric and they 
argue that it is possible to predict PD fluctuations. Wheelock and Wilson (2000) 
use competing risk hazard models with time-varying covariates to analyse factors 
that predict bank failures in the U.S. Using multivariate logit model, Demirgüç-
Kunt and Detragiache (1998) evaluated the determinants of banking crisis around 
the globe during 1980–1994 and find that countries with low growth in gross 
domestic product (GDP), a high real rate of interest and explicit system of deposit 
insurance are more prone to a banking crisis. Based on a framework of analytical 
network process, Niemira and Satty (2004) propose a multicriteria decision-
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making model to predict the financial crisis. Kosmidou and Zopounidis (2008) 
design a Utilities Additive Discriminants (UTADIS) model to predict bank 
failures and find that their model performs better than traditional multivariate 
models. Gaganis, Pasiouras and Zopounidis (2006) use a multicriteria decision aid 
model using UTADIS to classify 894 banks into three groups based on soundness 
from 79 countries and find that it outperforms decision analysis models. Zhao, 
Sinha, and Ge (2009) compare the performance of various factors that are used 
in predicting bank failures using Logit, Decision Tree, Neural Network, and 
K-Nearest Neighbours models and find that the choice of model is the key to 
the predictive power of the explanatory variables. Using a logit early warning 
model, Distinguin, Rous and Tarazi (2006) study the strength of stock market 
information, as a predictor of distress in the financial sector in the context of the 
safety net and the hypothesis of asymmetric information in the case of European 
banks. Some of their results support the use of market-based indicators and more 
so for banks whose liabilities are traded in the market.

Elsinger, Leharb and Summer (2006) analyse insolvency risk in 10 U.K. 
banks over a one-year horizon based on market data. Instead of assessing individual 
bank defaults, they analyse correlated exposures and interbank borrowing as 
major sources of systemic risk. Gropp, Vesala and Vulpes (2004) analyse the 
predictive power of “DTD” and the “spread” of subordinated debt issued by 
banks using logit model and proportional hazard model and conclude that the 
predictive power of negative DTD is robust in predicting downgrades between 6 
and 18 months, but the predictive power is poor as default nears. To the contrary, 
the predictive power of “spreads” reduces beyond 12 months before downgrades 
for banks which are not covered by the federal safety net. As the predictive power 
of two together is more than on a standalone basis, bank regulators may use the 
signals from these models to identify banks that need closer scrutiny. 

Chan-Lau and Sy (2007) argue that DTD overlooks the statutory actions 
taken by regulators to avoid the fiscal associated with defaults of banks under 
the Prompt Corrective Action (PCA) framework. They propose the concept of 
distance-to-capital and show that the same theoretical framework can be used 
to compute distance-to-capital applicable to individual banks. Using their 
framework, they demonstrate regulatory interventions in Japan pre-default during 
2001–2003. Authors argue that though it is desirable to develop a systemic default 
measure which can be used to assess the stability of the financial system as a 
whole, aggregation of data from individual banks can mask key idiosyncrasies. 
Takami and Tabak (2007) in their study on the Brazilian banking sector argue 
that option and market-based vulnerability indicators are essential in monitoring 
banking risks and option-based models are preferable in classifying banks during 
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the period of high stress in the Brazilian banking sector during the period 1994–
1995. Harada and Ito (2011) use DTD measure to assess whether the merger of 
banks in Japan during the 1990s and 2000s avoided failures and has added to the 
financial soundness of the merged entities. Using a probit model, Harada, Ito and 
Takahashi (2013) evaluate the predictive strength of DTD as a measure of the 
failure of Japanese banks. 

Koutsomanoli-Filippaki and Mamatzakis (2009) in their study of default 
risk in EU banks find that DTD might act as an early warning mechanism both 
for financial instability and inefficiency in the operation of banks. The authors 
argue that monitoring DTD increases the ability of financial markets to be in a 
state of better preparedness to deal with a crisis. Blundell-Wignall and Roulet 
(2012) models the DTD of a sample of 94 banks controlling for the market beta of 
individual banks during the period 2004 to 2011 to shed light on the regulatory and 
policy issues. They find strong support for a policy approach on the unweighted 
leverage ratio of all banks but no support for Tier-I ratio under Basel-I as a 
predictor of DTD. Chan-Lau (2010) argue that in view of interconnectedness that 
exacerbates systemic risk, there is a need to impose an incremental capital charge 
to the individual financial institution regarding their incremental contribution to 
systemic risk. Saldías (2013) generates aggregated DTD series using the option 
prices information of systemically important banks and the STOXX Europe 600 
Bank index. The author argues that systemic risk analysis is strengthened if both 
the measure of portfolio risk and Average DTD are put to use to monitor bank 
vulnerability. He also argues that information embedded in the prices of option 
imparts the series the property of forward-looking characteristics. Moreover, 
DTD series is quick to incorporate market expectations via option prices without 
distorting the overall position of risk in the banking system. Blundell-Wignall 
and Roulet (2014) argue that in view of the power of the results of the DTD 
models, the said approach may be used for the formulation of macro-prudential 
policy interventions. Betz, Oprică, Peltonen and Sarlin (2014) propose an 
early-warning model to predict vulnerabilities resulting in distress in European 
banks. They calibrate the cues from their model according to the preferences 
of the policymakers including the systemic relevance of individual banks as 
reflected in terms of their size. Their findings highlight that complementing 
bank-specific vulnerabilities with indicators for country-specific imbalances in 
the macroeconomy and vulnerabilities in the banking sector improves model 
performance. In addition, their model makes relevant out-of-sample predictions 
of distress in banks.

Milne (2014) evaluates the role of DTD of 41 largest global banks as 
a measure of bank performance during the financial crisis and finds that it only 
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provided an indication of difficulties much after the eruption of the crisis and 
concluded that the contingent claim models performed poorly as a market-based 
indicator of risk in the banks. The author also finds that Basel-II Tier-I Risk-
weighted capital ratio is not useful for the prediction of default. Moreover, the 
argument that shareholders of major global banks were exploiting bank safety net 
before the crisis (Sinn Hypothesis) is incorrect; to the contrary shareholders were 
ignorant of the level of risk to which their banks were exposed to. 

Singh, Gómez-Puig and Sosvilla-Rivero (2015) compute the individual 
bank level DTD and also the series at the aggregate level to assess the fragility 
in the EMU nations from 2004 to 2013. The authors argue that the cross-
sectional differences of the respective DTD are a better predictor of fragility than 
the regulatory index which is based on the European level complex and large 
banking firms. The authors find DTD a forward-looking and intuitive measure of 
risk. Nagel and Purnanandam (2017) argue that the assumption of constant asset 
volatility in the traditional formulation of the structural model is incorrect and can 
significantly underestimate the default probability of banks during good times. 

There are many studies (see Saha, Ahmad, & Dash, 2015) which address 
the issue of efficiency and also the drivers of the same in Malaysian banking. 
There are few studies which assess the effect of competition on financial stability 
in the Malaysian banking space. In their study to assess whether competition add 
to the banking stability across 45 countries (including Malaysia) during the period 
1980 to 2005 using the H-statistic measure proposed by Panzar and Rosse (1987), 
Schaeck, Cihak and Wolfe (2009) conclude that higher is the level of competition 
in banking system lower is its proneness to systemic crisis. The authors also 
conclude that competition increases the time to crisis of the banking systems. 
Noman, Gee and Isa (2017) use H-statistic, and HHI as measures of competition 
and the equity ratio, and the ratio of non-performing loans as indicators of financial 
stability. In their analysis of possible linkage of competition and financial stability 
in ASEAN during the period 1990 to 2014 by applying the two-stage Generalised 
Method of Moments (GMM) technique, the authors also find support for the 
competition-stability hypothesis. The present study adopts a more generic DTD 
framework to assess banking stability in Malaysia. 

METHODOLOGY

Database

Jessen and Lando (2015) argue that empirically DTD has been proven to be 
stronger in predicting default. In view of its extensive use in the literature as 
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documented above, we use the DTD framework to analyse the banking behaviour 
in our study. To obtain the “short-term liabilities” of individual banks, we use 
the annual reports of 10 domestic Malaysian banks including that of Bank-9 
which was merged to Bank-2 in 2005–2006 and Bank-10 which was merged with 
Bank-4 in 2010–2011 for the period 2001 to 2014.  In line with the definition 
adopted by Merton (1974), we compute short-term liabilities as the sum of current 
deposits, savings deposits, short-term debt (debt maturing within one year) and 
half of the long-term debt of the banks. For the risk-free rate, we take the daily 
yield of Malaysian Government Securities from FAST Database of BNM since 
1 January 2001 to 31 December 2014. We have assumed a minimum return of 
10% over risk-free rate as the expected return from the Malaysian Stock market. 
The daily share price of individual banks and the KLCI Index were collected 
from DataStream of the Thompson Reuters Database maintained at the Sultanah 
Bahiyah Library of the Universiti Utara Malaysia for the period under reference. 

In our analysis, we compute Beta, Asset Volatility, Asset drift, DTD and 
the Default Probability of the banks for each year using the structural model using 
the iterative procedure as implemented in the software package by Löeffler and 
Posch (2011), as detailed below.

To assess the systemic risk contribution of individual banks, we create 
two databases: one, the aggregate data for eight banks and in the other datasets 
of seven banks where we exclude one bank whose systemic risk contribution we 
intend to assess. 

The Model (Löeffler and Posch, 2011)

The foundation of the Merton model is that a firm default when the market value 
of its assets falls below the book value of the firm liabilities. In a simplified 
version of the Merton Model, we consider the firm’s liabilities consist of one 
zero-coupon bond with a principal value of L and maturing at time T. We assume 
that the equity holders wait until T before they take the decision either to default 
or not. The probability of default at T is then the probability that the market value 
of assets below the book value of liabilities. However, in general, firms do not 
default when the asset value reaches or fall below the book value of total liabilities 
of the firm; the long-term liabilities provide some elbow room. The default point, 
as a result, lies in between current liabilities and total liabilities of any firm.  For 
illustrative purpose, we plot the book value of liabilities from the annual report 
in Figure 1 and we assume that the market value of its assets follows a lognormal 
distribution. The variance of the log asset value is denoted by σ2.
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Figure 1. Profile of default probability
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where μ is the drift parameter.

The standard deviation of the asset value measures the asset risk, and 
asset volatility is related to the size of the firm and its nature of the business. A 
firm’s leverage magnifies the underlying volatility. Industries with lower asset 
volatility tend to assume a higher degree of leverage. Asset value, business risk, 
and the degree of leverage may be combined to arrive at a composite measure of 
default risk which is comparable to market net worth equivalent to one standard 
deviation movement in the asset value of a firm (Crosbie & Bohn, 2003). As it 
is not possible for banks to accurately discriminate between firms that would 
or would not default, firms pay a premium over the risk-free rate to banks to 
compensate in proportion to the default risk assumed by them.

Let us assume that t denotes today. The log asset value in T thus follows 
a normal distribution with the following parameters:
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v+ - - -b ]l g …. (1)

If we know L, At, μ and σ2 it would be easier to compute the default 
probability. In general, the probability that a normally distributed variable x falls 
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below ɀ is given by ɸ z E x xv-^ ]h g6 5 ? @ , where ɸ denotes the cumulative standard 
normal distribution.
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.
/

/ /

Prob of Default
ln

ln

T t
L A T t

T t
L A T t

2

2

t

t

2

2

z

z

v

n v

v

n v

=
-

- + - -

=
-

+ - -^

^

]

]

h

h

g

g

=

=

G

G
…. (2)

DTD measures the number of standard deviations the expected asset 
value  is away from the default. 

We can therefore write  
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Mathematically, the pay-off to equity holders can be described as

ET = max (0, AT – L) …. (4)

This is the pay-off of a European call option. The underlying of the call 
are the assets of the firm and the strike price of the call is L. The pay-off to the 
holders of bond correspond to a portfolio composed of a risk-free zero-coupon 
bond with principal L and a short put on the firm’s asset with a strike price of L.

If the firm pays no dividends, the equity value can be determined with the 
standard Black-Scholes call option formula:

.E A d Le ( )
T t
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Where r denotes the logarithmic risk-free rate of return. 
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However, the problem is to determine the asset value At and the asset 
volatility σ and we now have an equation that links an observable value (the 
equity value) to those two unknowns [σ enters Equation (5) via Equation (6)]. 
But, we have only one equation, with two unknown variables.

Implementing the Merton model with a one-year time horizon: The 
iterative approach:

Rearranging the Black-Scholes Equation (5), we get

( )/ ( )A E Le d d( )
t t

r T t
2 1z z= + - -6 @ …. (7)

If we go back in time, say that there are 260 trading days in a year, then 
we get a system of equations:
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The equation system (8) consists of 261 equations with 261 unknowns 
(asset values). The additional unknown variable, the asset volatility σ can be 
estimated from the time series of As. Thus, the system of equation can be solved. 

In general, firms have liabilities that mature at a different point in time. 
However, we make an ad-hoc assumption that maturity of liability is one year and 
we apply it on a retrospective basis on the assumption that the firm has a stable 
liability structure and issue debt when some part of the debt is retired. Setting 
(T – t) to one for each day in the preceding 12 months, Equation (8) simplifies to
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This system of equation can be solved through the following iterative 
procedure: 

Iteration 0: We set the starting values of At–a for each a = 0, 1, 2,..., 260. 
It is sensible to set the At–a equal to sum of the market value of equity Et–a and the  
book value of liabilities Lt–a. We also set σ equal to the sum of the log asset returns 
computed with the At–a.

For any further iteration: k – 1, 2, 3, ... till the end.
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Iteration k: We would insert At–a and σ from the previous iteration into 
the Black-Scholes formula d1 and d2. We input these d1 and d2 into Equation (7) to 
compute the new At–a to compute the asset volatility.

We continue on until the asset values from one iteration to the next 
converges to below the value of 10–10. The iterative procedure is implemented 
through the macro “iterate” in the software. With the asset values obtained 
through the iterative procedure, we compute the beta of the assets with respect 
to KLCI index and use the Capital Asset Pricing Model (CAPM) to compute the 
expected return using the formula, ,E R R E R Ri i Mb- = -^ h6 6@ @  where R denote 
the simple risk-free rate of return.

Analysis and Findings

The overall profile of riskiness of individual domestic Malaysian banks under 
the structural model presented in the previous section is presented in Table 1. 
The profile of three parameters viz. Beta, Asset Volatility, and Asset drift of the 
domestic banks as computed in Tables 2, 3, 4 and the corresponding Figures 2, 3 
and 4 depicting these profiles are presented. Tables 5 and 6 present the profile of 
asset volatility and asset drift of the individual domestic Malaysian banks. A close 
look at the tables would provide an insight into the changing risk in the Malaysian 
banking system over time.

Table 5 indicates that of the four major domestic banks in terms of 
market share, Bank-1, Bank-2, and Bank-4 appeared 9, 6 and 5 times respectively 
amongst the top three in terms of asset volatility and in contrast Bank-3 appeared 
only once during the entire period of 2001 to 2014. In fact, the Bank-3 was at the 
bottom of the table in as many as 7 years. It needs to be qualified that Bank-2 was 
amongst the bottom three in 5 years in terms of asset drift.

Bank-1 was amongst the top three banks in terms of the size of asset drift 
in 11 out of 14 years followed by Bank-2 which was amongst the top three in 7 out 
of these years. In contrast, Bank-3 was amongst the bottom three in 9 out of these 
14 years under reference. Amongst the smaller banks, in terms of asset volatility, 
Bank-5 was amongst top three in 10 out of the 14-year period and in terms of asset 
drift, it was amongst bottom three in 7 years. It is interesting to note that Bank-8 
was amongst the bottom three in 11 years in terms of asset volatility and 9 years 
in terms of asset drift.
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Figure 2. Comparative profile of beta of domestic Malaysian banks for 2001–2014

Figure 3. Comparative profile of asset volatility of domestic Malaysian banks for 
2001–2014
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Figure 4. Comparative profile of asset drift of domestic Malaysian banks for 2001–2014

A close look at Table 7 on the profile of the DTD of the domestic 
Malaysian banks and the corresponding Figure 5 would indicate that the overall 
direction of movement of the DTD curve is bundled. On the whole, DTD started 
moving up from 2001 until 2006 and there was a sharp drop in its values across 
the banks during the period of global financial crisis and bottomed out in 2008. 
Since then though there was a marked improvement in the overall profile of the 
position in case of domestic banks, the profile was however erratic from 2010 to 
2014. On the whole, Bank-3’s DTD profile dominated all the banks followed by 
Bank-1 and Bank-4.

To assess the robustness of the framework of DTD in capturing the 
potential distress of banks in Malaysia, the analysis was extended to the case of 
two banks which were merged during the first decade of this century: Bank-9 
was merged with Bank-2 in 2005–2006 and Bank-10 was taken over by Bank-4 
in 2010–2011. Table 8 presents the profile of DTD of these banks for the period 
for which the data was available. It is interesting to note that framework is able 
to clearly capture the pending distress and vulnerability for Bank-10 especially 
during the financial crisis when its DTD fell down to as low as 1.07, the lowest 
amongst all the domestic banks during the said year, by the end of 2008 dropping 
from the level of 5.35 during the pre-crisis year of 2006.
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Figure 5. Comparative profile of distance to default of Malaysian banks 2001–2014

Table 9
Systemic risk contribution of individual domestic Malaysian banks

Year Particulars Aggregate Excl. 
Bk-1

Excl. 
Bk-2

Excl. 
Bk-3

Excl. 
Bk-4

Excl. 
Bk-5

Excl. 
Bk-6

Excl. 
Bk-7

Excl. 
Bk-8

2002 DTD 5.88 4.75 5.88 5.45 5.43 5.83 4.14 6.02 5.82

2003 DTD 7 4.12 7.4 7.31 6.77 7.01 7.13 6.99 7.02

2004 DTD 7.67 7.22 7.47 6.8 7.37 7.52 7.8 7.69 7.66

2005 DTD 9.57 9.33 9.17 8.52 9.21 9.46 9.48 9.56 9.53

2006 DTD 11.35 10.45 11.4 10.33 10.83 11.18 11.34 11.22 11.2

2007 DTD 7.01 6.71 7.27 5.96 6.94 6.98 7.13 6.91 7.03

2008 DTD 3.92 4.02 4.08 3.29 3.73 3.88 3.98 3.83 3.87

2009 DTD 8.55 10.11 8.24 7.49 8.16 8.49 8.21 8.38 8.51

2010 DTD 12.71 12.35 13.13 11.5 12.47 12.63 12.64 12.44 12.63

2011 DTD 8.76 8.59 8.86 7.8 8.73 8.73 8.8 8.87 8.76

2012 DTD 17.09 16.54 19.26 15.06 16.35 10.37 16.67 15.61 17.04

2013 DTD 12.15 11.52 13.71 10.78 11.76 12.22 12.1 12.07 12.09

2014 DTD 12.79 12.07 13.73 12.8 9.32 12.7 12.46 12.62 12.75

Note: DTD = Distance to default

Having analysed the riskiness/robustness of individual banks under the 
DTD framework, it was felt imperative to analyse and assess the contribution of 
individual banks towards the systemic profile of banks in the country. It can be 
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seen from Table 9 that the DTD at the aggregate level increased gradually from 
5.88 to 11.35 by 2006 but dropped significantly down to 3.92 by the end of 2008. 
The effect of the financial crisis on the systemic risk in domestic commercial 
banking space is therefore quite vivid. The situation, however, improved quite 
rapidly in the subsequent years by the end of 2014. In terms of the contribution of 
an individual institution to systemic risk would indicate, of the four bigger banks, 
Bank-2 has been contributing to systemic risk in most of the years during the 
period under reference. Bank-1 had also added to the systemic risk during 2008 
and 2009. Most significantly, Bank-4 and Bank-3, especially the Bank-3 has been 
providing a cushion to the system throughout the period under reference and have 
reduced the systemic risk at the aggregate level.

CONCLUSIONS AND DISCUSSIONS

As the economy of Malaysia is entering into a new phase of reckoning, the 
robustness of the health of individual banks and hence systemic stability would 
be of crucial importance. The International Monetary Fund (IMF) Report (IMF, 
2014) on the performance of financial sector of the country notes that comfortable 
macroeconomic environment, strong oversight of regulation since the consolidation 
exercise in 2000 to meet the shocks arising out of the Asian Financial crisis in 
1997–1998, and favourable policies of the government has resulted in a rapid 
progress in the financial sector of the country. The report notes that as per the 
baseline projected GDP growth rate of 5% and the projected growth of credit of 
8% per annum, Malaysian banks would be able to meet the requirements of Basel-
III core Tier-I capital requirement and would at the same time be able to meet the 
growth requirement of the economy. In a high growth scenario, however, banks 
may have to skip dividend or raise additional capital of around USD260 million 
to meet the growth requirements of the economy. The report also notes that as the 
credit cycle in the economy steps into late expansionary phase, there is a need to 
bolster the resilience of the domestic banks through counter-cyclical policies of 
capital retention, raising capital base and restrain exuberance in lending.  

The trajectories of banks as assessed using the framework of distance to 
default clearly reflect that despite the apparent strength of banks at the overall 
level, the banking system did face the stress post-global financial crisis.  The low 
default probability as observed during the entire reference period is extremely 
low, but this is not surprising given the low asset volatilities and low leverage 
ratios of the Malaysian banks. Besides, the Merton Model tends to underestimate 
empirical PDs. So, whereas the model as implemented in the software could 
suggest the PDs as zero, practical applications of the model would recalibrate 
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PDs, and possibly assume some minimum value in addition to the recalibration. 
Moody’s KMV, for example, uses a minimum PD of 0.01%. Based on the analysis 
of 22 largest investment banks and bank holding companies, Patro, Qi and Sun 
(2013) found that correlation of daily stock return is a timely and forward-looking 
indicator of systemic risk. Adrian and Brunnermeier (2016) proposed a ∆CoVaR 
measure of systemic risk and argued that it is a robust indicator to predict systemic 
risk in the financial system. Researchers may like to explore these approaches in 
their assessment of systemic risk in Malaysian banking. 

We are sure that the present paper being the first of its kind would attract 
the attention of the scholars engaged in the research work on banking stability in 
Malaysia. Moreover, given the robustness of the framework of DTD as a predictor 
of impending stress in the banking system, the findings of the study would also 
attract the attention of the regulator and the policy planners in the country. The 
investors’ community at large would undoubtedly be watching the findings of the 
present study with keen interest.
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