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ABSTRACT 
 
This paper argues for the superiority of multifractal over ARCH methods where the 
objective is to understand market microstructure based on accurate volatility modeling. 
The paper examines the multifractality of index price series on daily data of Nikkei 225, 
All Ordinaries, Hang Seng, KLSE Composite and Straits Times Index. Wavelets, short 
form waves with local support are used for time/scale decomposition of financial time 
series.  The multifractal spectrum (MFS) of daily index prices is calculated with Wavelet 
Transform Modulus Maxima method described in Yalamova (2003). The MFS may reveal 
trading time irregularities suggested by the Multifractal Model of Asset Returns (Calvet 
& Fisher, 2002). The trading time deformation process may uncover information on the 
efficiency of the trading system that would be useful for regulatory and reorganization 
purposes. Multifractals describe the cascade of volatility of returns and are suited for 
research at different time scales simultaneously unlike ARCH type models. In addition, 
this method provides dimension estimates for the detection of emerging chaotic patterns. 
The Hurst exponent calculated from the scaling function indicates persistence in volatility 
of index returns. The choice of data around the October 1997 drawdown is based on the 
scientific evidence that markets as complex dynamical systems reveal their properties 
better in extreme conditions.  
 
Keywords: wavelet transform, market microstructure, multifractals, volatility 
 
 
INTRODUCTION 
 
Growing competition between different stock exchanges raises the general 
objective of finding the most efficient way to organize securities trading. Toward 
the end, financial market microstructure research has determined certain 
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characteristics believed to characterize an efficient securities market: low 
operational costs, availability of information, liquidity, and information 
efficiency. Of potential concern, however, is that a significant part of this 
research on market microstructure depends on the accuracy of volatility modeling 
that is based upon problematic assumptions about the underlying distribution of 
price variations in the market. In particular, excess volatility and non-normality 
undermine assumptions of both market efficiency and the random walk hypo-
thesis. Dependence upon assumptions of normality and limited volatility have 
also led mainstream financial economists to prefer autoregressive conditional 
heteroscedasticity (ARCH) type models that capture only imperfectly the 
volatility correlation and the fat tails of the probability density function of price 
variations. While explaining clustered volatility, such models fail to recognize the 
presence of power laws in the volatility autocorrelations. Finally, these models 
also demonstrate some inaccuracies in terms of changes of time scales.  
 
 This paper will argue and attempt to demonstrate, using Asia-Pacific 
exchange data, the superiority of multifractal modeling where the objective is to 
understand market microstructure. In contrast to ARCH type models, the 
distinguishing feature of the multifractal model is multiscaling of the return 
distribution's moments under time-rescaling. Multiscaling is a form of time-
invariance that combines extreme returns with long memory in volatility. Calvet 
and Fisher (2002) show that a model characterized by multiscaling is consistent 
with economic equilibrium and that such a model may also imply the presence of 
uncorrelated returns and semi-martingale process. The multifractal spectrum 
shows the renormalized probability density of the occurrence of the local scales 
or the scaling of the distribution's moments with the scaling exponent on the             
x-axis and their renormalized probability on the y-axis. For example, the 
monofractal Brownian motion has only one scaling exponent (Hurst exponent) 
equal to 1/2, therefore the second moment of the distribution scales with the 
squared root of time. 
 
 Although the multifractal nature of financial time series has been proven 
in a number of Mandelbrot's publications since 1962, this type of empirical 
research has been limited and not systematic until recently. Lux (2003) 
acknowledges the advantage of multifractal models to capture long memory in 
different powers of returns which are characteristics for financial time series. 
This ability is absent in traditional stochastic volatility and generalized 
autoregressive conditional heteroscedasticity (GARCH) models as well as in their 
long-memory variants (e.g. fractionally integrated generalized autoregressive 
conditonal heteroscedasticity, FIGARCH). Although the FIGARCH of Baillie, 
Bollerslev and Mikkelsen (1996) explores long memory, it does not include 
representation at different scales. On the other hand, the relationship between 
statistical representations at different time scales is addressed by Drost and 
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Nijman (1993), but by temporal aggregation of log-returns only for a given class 
of discrete processes, which weakens the scale consistency. Calvet and Fisher 
(2002) propose a class of continuous-time processes that incorporates the thick 
tails and volatility persistence of financial time series. They also show that in 
Monte Carlo simulations, the estimated multifractal process replicates the scaling 
properties of the data and compares favorably with the above specifications. 
 
  The multifractal nature of stock and foreign exchange (FX) returns has 
been documented by Schmitt, Schertzer and Lovejoy (1999), Mandelbrot (1999), 
Bershadskii (2001), Ausloos and Ivanova (2002), Fisher, Calvet and Mandelbrot 
(1997), Xu and Gençay (2003), Fillol (2003) among others. Additionally, the 
multifractal spectrum contains important information on existing nonlinear 
patterns, including detection of important singularities, as shown by Struzik 
(2000). 
 
 The multifractal nature of stock prices also leads to volatility clustering 
(conditional heteroscedasticity) and long memory (slowly decaying auto-
correlation). Both properties might be labeled as horizontal dependency when 
viewing volatility in the time domain. Moreover, Gençay, Selçuk and Whitcher 
(2002) documented asymmetric vertical dependence of volatility across various 
time scales, emphasizing that volatility decreases at higher frequency earlier than 
it does at lower frequency. Breymann, Ghashghaie and Talkner (2000), and 
Muzy, Bacry and Arreodo (2001) also show that the return volatility displays 
long-term correlations from large to small time scales and that using a fixed time 
scale is not suitable for an analysis of the real dynamics of price moves. In such 
situations, wavelets would be an appropriate tool as they capture dependencies in 
the two dimensional time-scale plane. Temporal analysis is performed with a 
contracted, high-frequency version of the prototype wavelet, while scale/ 
frequency analysis is performed with a dilated, low-frequency version of the 
same wavelet.   
 

 
Figure 1. Time series analysis is performed with translated in 

time and dilated in scale prototype wavelets 
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MULTIFRACTAL SPECTRA FOR THE DESCRIPTION OF COMPLEX 
DYNAMICAL SYSTEMS  
 
The financial markets have been shown to be similar to complex dynamical 
systems (Johansen, Sornette & Ledoit, 2000). The different parts of complex 
systems are linked and affect one another. A complex system may exhibit 
deterministic and random characteristics with the level of complexity depending 
on the system's dynamics and interactions with the environment. The use of 
multifractal spectra to better understand aspects of financial time series is based 
on the characterization of financial markets as complex dynamical systems. The 
behavior of financial markets has been increasingly quantified by the means of 
statistical physics, for examples, scaling, multifractality and multiplicative 
cascades. Pesin and Weiss (1997) motivate the study of multifractals and offer 
complete multifractal analyses for several classes of dynamical systems, the 
topology of dynamical systems is revealed in the multifractal spectrum. Invariant 
sets with complicated geometry can be decomposed into subsets with scaling 
symmetry, Lovejoy and Schertzer (1999) argue that nonlinear scale invariant 
dynamics lead to stochastic chaos (universal multifractals). Stochastic chaos 
allows for the presence of richer scale invariance, e.g. multifractals produced in 
cascade processes. In finance, cascade models are tested in Turiel and Pérez-
Vicente (2002), Schmitt et al. (2000), Muzy et al. (2000) among others. Other 
work links wavelets, power laws and complex dynamical systems: Corcos et al. 
(2002) suggest that exponentially growing bubbles cross over to a non-linear 
power-law growth rate leading to a finite time singularity. Time-scale adaptive 
wavelets are appropriate for the detection of power-laws. Mallat and Hwang 
(1992), also develop an algorithm for singularity detection based on wavelet 
transform modulus maxima that allows the calculation of the multifractal 
spectrum of time series. Based on the multifractal spectrum, Barreira, Pesin and 
Schmeling (1997) attempt a "physical" classification of dynamical systems, 
which takes care of various aspects of the dynamics (chaoticity, instability, 
geometry, etc.) simultaneously. Halsey et al. (1986) asserts that strange attractors 
for chaotic dynamical systems are also characterized by their dimension and 
multifractal spectra.  
 
 Research on chaotic dynamics in finance is scarce and non-systematic 
and we are not aware of multifractal analysis in that venue. Therefore, 
acknowledging the importance of multifractal analysis as a powerful tool for the 
numerical study of dynamical systems, we hope to increase interest in this 
methodology among scholars and gather more empirical evidence of non-linear 
patterns in financial data. Furthermore, multifractal dimension estimations can be 
used for the detection of emerging chaos in financial time series. For example, 
Brock and Hommes (1998), Chen, Lux and Marchesi (2001), Guanersdorfer 
(2000), Lux (1995, 1998) among others, suggest that the heterogeneous beliefs of 
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market players lead to market instability and complex dynamics such as chaotic 
fluctuations. If wavelet methodology continues to show the promise as evidenced 
by Wei, Zhan and Lai (2002), it may become possible for emerging chaotic 
dynamics to be detected and policymakers may be able to resort to active chaos 
control to achieve efficiency and prevent crashes. 
  
 
METHODOLOGY AND DATA 
 
A comparison of the multifractal spectra of stock index prices of Asia-Pacific 
markets was performed in an attempt to characterize market ability to efficiently 
process information and to ensure high liquidity. The investigation is based on 
the Multifractal Model of Asset Returns (MMAR) of Calvet and Fisher (2002) 
where stock prices follow a compound process of Fractional Brownian motion 
and stochastic trading time. The trading time deformation is a multiplicative 
cascade process reflected in the multifractal spectra and the specification of the 
multifractal generating process can be construed from the estimates of the 
spectrum. The comparative analysis of stock market data during periods of 
extremes is motivated by the scientific evidence in physics that such complex 
dynamical systems reveal their properties better under stress than in normal 
conditions. 
 
 A number of studies attempt to research the impact of the system on the 
efficiency of trading. Our conjecture is that the organization of trading impacts 
the price diffusion process and accurate estimates of volatility can be used for the 
analysis of the information efficiency of different markets. Furthermore, these 
insights may lead to better regulatory practices of the financial system to prevent 
or at least limit the magnitude of "crashes" and loss of economic welfare. The 
Hurst exponent measures the persistence in volatility and can be calculated from 
the scaling function. The multifractal spectrum (MFS) is estimated from the 
moments of the data and conveys information on the multifractal generating 
process. MFS is a humped function with maximum 1 at f(α0). The decreasing 
renormalized probabilities of singularities lower than α0  pertain  to the positive 
higher moments of the distribution as shown on Figure 2. 
 
 Sornette, Johansen and Bouchaud (1996) argue that scale invariance and 
self-similarity are the dominant concepts in the processes surrounding significant 
drawdowns in stock index prices. Johansen et al. (2000) identify log-periodic 
oscillation in daily price data extending two to four years before and after such 
events. Therefore, we perform our analysis on 512 daily observations before and 
after the drawdown date, a period of approximately two years that also 
accommodates wavelet properties.     
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 Daily data of index closing price series for the Asia-Pacific region was 
tested for multifractality. Concavity of the scaling function determines the 
presence of multifractality. The multifractal spectrum of a number of indices was 
calculated for periods of different length in normal and "stressed" market (around 
significant "drawdowns" as defined in Johansen & Sornette, 2001). The results 
reported are on five index price series that experienced stress during the same 
period around October 1997 on the premise that multifractal description of 
volatility changes in extreme periods might be used for comparative analysis of 
market microstructure and establishment of corrective measures in the 
organization of security trading. Preliminary results of similar research were 
reported at the 18th Australasian Finance and Banking Conference. 
 

 
 

Figure 2.  Empirical and analytical multifractal spectrum with singularity 
exponents α and their renormalized probability f(α)  

 
 The concept of multifractality originated from a general class of 
multiplicative cascade models introduced by Mandelbrot (1974). A multifractal is 
a fractal with a probability measure in its support. Multifractal formalism was 
originally established to account for the statistical scaling properties of singular 
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measures through the determination of their singularity spectrum f(α). Fractals 
appear not only as singular measures, but also as singular functions or signals = 
time series. Parisi and Frisch (1985) proposed extracting the multifractal 
spectrum of the velocity field from the inertial scaling properties of structure 
functions. 
 
 The structure function approach has serious drawbacks as shown by 
Muzy et al. (1993). This approach fails to fully characterize the singularity 
spectrum due to some fundamental limitations in the range of accessible 
irregularity exponents – it fails to detect that part of the spectrum which lies 
beyond the value α ≥ 1. 
 
 As proven by Mallat and Hwang (1990), multifractal formalism based on 
wavelet transform modulus maxima (WTMM) allows us to determine the whole 
singularity spectrum directly from any experimental signal. Muzy et al. (1991) 
define the scaling behavior of partition functions Z(q, a) from the WTMM. The 
slope of the partition function determines the scaling τ(q) of moments of the 
distribution. Linearity of the scaling function suggests monofractal behavior of 
the time series, (all moments exhibit the same H scaling with time). 
 
     The procedures of calculating the multifractal singularity spectrum based 
on WTMM is described in Yalamova (2003). Wavelet transform has proved to be 
a particularly efficient tool for measuring the local regularity of a function. 
 
 The wavelet transform of f(t) = P(t) is defined as: 
 

 
 

(1) 
 +

, 
( , ) ( ) ( ) ,aW a f t t dtττ

∞

∞
= ∫ ψ

−

 
where the analyzing wavelet ψ is a function with local support, centered around 
zero and the family of wavelet vectors is obtained by translation τ and dilatation 
a. 
  

The modulus maxima (largest wavelet transform coefficients) are found 
at each scale a as the suprema of the computed wavelet transforms such that: 
 

   ( , ) 0.W aτ
τ

∂
=

∂
                                                                          (2) 
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Figure 3. An example of maxima lines of wavelet coefficients 

 

 
 

Figure 4. Gibb's partition function 
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 The originality of the WTMM method is in the calculation of the 
partition function Z(q,a) from these maxima lines. The space-scale partitioning 
given by the wavelet tiling or skeleton defines the particular Gibb's partition 
function: 
 
 sup

,

( , ) ( , ) q
a

a

Z q a W a
τ

τ=∑                                                            (3) 

  
 This partition function effectively computes the moments of the absolute 
values of the wavelet coefficients W(τ, a). 
 
 A decay scaling (correlation) exponent τ(q) is computed as the slope of 
the dyadic logarithm of Gibb's power partition function: 
 
   2 2log ( , ) ( ) log ( ),Z q a q a C qτ≈ +                                                      (4) 
 
where q is the power of the moments, a is the scale. 
 

 

Scaling function τ(q) 

τ(
q)

 

q 

 
Figure 5. Example of a concave scaling function 
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 There is no explicit local information present in the resulting scaling 
estimates, because this procedure is based on Gibb's statistical averaging or 
partition function Z(q,a). The usefulness of the partition function method resides 
in the fact that it obtains information on global averages, which tend to be more 
stable than local information. Its disadvantage is that it tends to obscure the local 
information. 
 
 It is in fact the scaling exponent τ(q) that measures the asymptotic decay 
of the partition function Z(q,a), which defines the spectrum of the generalized 
dimensions Dq: 
 
 ( ) ( 1) .qq q Dτ = −                                                                (5) 
  
 The generalized dimensions Dq, also called Rényi dimensions: 
 

 
0

1 1lim log ,
log 1

q
q iD p

a qα→
=

− ∑                                                        (6)  

 
measure the Hausdorff (capacity) dimension D0, the information (Shanon 
entropy, Lyapunov) dimension D1 and the correlation dimension D2. The 
properties of these dimensions and their indication of emerging chaotic patterns 
in the data will be discussed in separate paper. From the Rényi dimensions one 
can proceed to the spectrum of singularities by a Legendre transformation. This 
spectrum f(α) is the fractal dimension of the subset of points for which the 
probability density scales with a local exponent α, that is, statistics of local 
Hölder exponents.  
 
 The singularity of a function g(x) is measured by the Hölder exponent (α) 
at point x0 as: 
 
 0( ) ( ) ,L

ng x P x x C x x α− − < − 0            (7) 
 
where C is a constant and Pn is the degree of the polynomial, that is, g(x) is n 
times continuously differentiable in x0 and the polynomial Pn(x) is the first n + 1 
terms of the Taylor series expansion of g(x) in x0. The multifractal spectrum gives 
a description of the singularity content of the time series. 
 
 Halsey et al. (1986) characterize the singularity of fractal measures by 
their strength α and their density distribution f(α). The spectrum of singularities is 
given by ranges of α and their densities f(α). In monofractal cases, the spectrum 
will collapse to one point only, known as the Hurst exponent. The concavity of 
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the scaling function τ(q) gives evidence of multifractality and the existence of 
more than one singularity exponent. The calculation of the multifractal spectrum 
of time series is performed on the scaling function τ(q) via the Legendre 
transform: 
 

 [ ]( ) ( ) .q Min q f
α

τ α α→ −               (8) 

 
 For more details on the methodology and the algorithm of the 
multifractal spectrum calculations in Matlab, see Yalamova (2003). 
 
 
RESULTS 
 
Fractional Brownian Motion 
 
A Fractional Brownian motion with Hurst exponent (H) between 0 and 1 is 
defined by a stationary increment process that follows a normal distribution with 
zero mean and variance σ2H. We report the Hurst exponent of index prices before 
and after significant "drawdowns" calculated from the scaling function τ(q) 
according to the following property proved in Calvet and Fisher (2002): 
 

 1( ) 0
H

τ =                                                                              (9) 

 
 The Hurst exponents are reported for a 1024 day period around a 
significant drawdown (October 1997). All price series exhibit volatility 
persistence (H > 0.5), long-memory in volatility. While Nikkei 225 and All 
Ordinaries Hurst exponents decrease in the period after the "crash", Straits Times 
Index (STI) and KLCI (slightly) increase. Hang Seng Index (HSI) stays the same. 
It may cautiously suggest that the order driven market system might produce a 
decrease in volatility persistence after a drawdown. The quote driven system on 
the Singapore Stock Exchange produced the opposite effect. Although we could 
estimate the nature of "structural break" in relation to the Hurst exponent for the 
overall period, we view such an analysis with reservation, because of the 
presence of multifractality in the series. Besides, Lux (2003) shows that long 
term dependence in the various powers of returns can be accounted for by the 
multifractal time transformation alone. Therefore, we will proceed to the analysis 
of the multifractal model, while the estimated Hurst exponents are used in the 
calculation of the trading time deformation process spectrum. 
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TABLE 1 
TIME SERIES WITH HURST EXPONENT LARGER THAN 0.5  

EXHIBIT PERSISTENCE IN VOLATILITY AND DEVIATION FROM  
GEOMETRIC BROWNIAN MOTION 

 

Oct. 1997 HSI STI AORD N225 KLSE 

Before 0.59952 0.6031363 0.5995204 0.5803831 0.626566 
After 0.598444 0.66313 0.547046 0.5310674 0.639795 

 
Multifractality of the Price Series 
 
Average Hurst exponents should be viewed with caution as they are only a part in 
the more complex representation of the asset prices in the fractional Brownian 
motion in multifractal trading time framework. If the H exponent varies with 
time, the process exhibits multifractal structure. A test of the multifractality of a 
process involves the linearity of the scaling function τ(q). 
 
 Gonçalvès and Riedi (2003) affirm that the empirical scaling function 
may appear concave outside its theoretical support because empirical estimators, 
based on a finite length data set, are not sensitive to theoretical divergence of 
moments. A wavelet based estimator for the characteristic critical order 
exponents is used to determine the interval of all orders q with finite moments. 
This estimator was used to select the range of support of the scaling function to 
which the linearity criterion was applied. The scaling functions of the examined 
time series were clearly deviating from linearity that prompted to conclude 
multifractality of the processes under consideration. 
 

AORD scaling function

-2

-1.5

-1

-0.5

0

0.5

1

1.5

-1 0 1 2 3 4 5 6-2

moments

sc
al

in
g 

ex
po

ne
nt

s

AORD scaling function 

Sc
al

in
g 

ex
po

ne
nt

 

Moments 

 
 

Figure 6. Test on the concavity of the scaling functions of all five stock index prices 
was performed on the range of moments [–1: +5] (continued on next page) 

74 

http://finance.yahoo.com/q?s=%5EHSI
http://finance.yahoo.com/q?s=%5ESTI
http://finance.yahoo.com/q?s=%5EAORD
http://finance.yahoo.com/q?s=%5EN225
http://finance.yahoo.com/q?s=%5EKLSE


Wavelet Test of Multifractality  
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KLSE scaling function
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Figure 6. (Continued on next page) 
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HSI scaling function
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Figure 6. (Continued) 
 

The index price time series exhibit deviations from linearity of the 
scaling exponent τ(q) suggesting the existence of a MFS instead of one 
monofractal Hurst exponent. Muzy et al. (2000) use the non-linearity of the 
scaling function as evidence of multifractality of price fluctuations of financial 
time-series. Turiel and Pérez-Vincente (2002), Schmitt et al. (2000), Bacry, 
Delour and Muzy (2001) among others use the non-linearity of the scaling 
function to show that the estimate of two moments is by no means sufficient for 
describing the entire distribution, proposing the use of multifractal analyses and 
models in finance. Important implications of multifractal analysis are the 
characterization of all order moments and the validation of scaling models. 

 
Multifractal Trading Times 
 
Monofractal Brownian motion often lacks flexibility to model real-world 
situations, due to simplicity in scaling or due to non-stationarity. Multifractal 
processes with non-linear scaling function and stationary zero mean increments 
are proposed by Riedi (2002): 
 
                                                                     (10) ( ) ( ( )),Ht B M tβ
 
where (M(t)), stands for a monotonic multiplicative cascade with flexible 
multifractal properties and BH generally represents any self-similar process with 
index H. Based on a multifractal time warping, ß(t) combines in one process the 
rich multifractal structure of a multiplicative cascade along with the self-
similarity and the non-monotonicity of a H-fBm paths. 
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 A multifractal model of asset returns that compounds a Fractional 
Brownian Motion with a multifractal time deformation process was first 
introduced by Mandelbrot and further developed by Calvet and Fisher (2002). 
Gaussianity, long range dependence and multifractal structure are characteristics 
of "Brownian motion in multifractal time". If BH(t) is a fractional Brownian 
motion and stochastic trading time θ(t) is a multiplicative process, then the 
compound process X(t): = BH[θ(t)] is fractional Brownian motion in multifractal 
trading time, combining long range dependence process and positive increment 
process with underlying multifractal structure. 
 
 The MFS reflects the n-point correlations and thus provides more 
information about the temporal organization of price fluctuations than two-point 
correlations. The MFS f(α) is a convex and single-humped function with a 
maximum at q = 0, where f(α0) = D0 is the capacity dimension. 
 
 At q = +∞ the slope of the MFS is infinite and αmin = D∞. The minimum 
alpha in the empirical measurements reaches down to values much lower than 
0.5, representing an irregular price process with high risk for investors. 
According to the MMAR, the multifractal spectra calculated from the price 
function defines the MFS of the trading time θ as: 
 
 ( ) ( / ).Pf f Hθα α=                                                                        (11) 
 

 

NIK225 MFS 

f(a
lp

ha
) 

Trading time Price 

Alpha 

Figure 7: Example of the relationship between price and trading time process 
multifractal spectra  
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TABLE 2 
MULTIFRACTAL SPECTRA OF TRADING TIMES REFLECT CHANGES IN THE PRICE 

DIFFUSION PROCESS BEFORE AND AFTER SIGNIFICANT DRAWDOWNS. LOW 
MINIMUM α IS RELATED TO INSTANCES WITH FAST TRADING  

AND HIGH RISK FOR THE INVESTOR 
 

Trading time MFS HSI STI AORD N225 KLSE 

Before αmin 0.257489 0.429654 0.39158 0.3172732 0.332415 

After αmin 0.190293 0.334474 0.153063 0.2702105 0.167366 

 
 After the "crash", markets exhibit increased risk measured by αmin 
however the concavity of the spectrum for lower Hölder exponents (more 
irregular instants) implies disproportionate contribution to volatility. The measure 
of trading time per unit of clock time is high for low α′s and is related to swift 
passage of trading time. The STI sustained larger αmin values that might be 
attributed to the automatic quotation system as we obtained similar results for 
other dealer markets.  On the other hand, the Tokyo Stock Exchange, with its 
continuous auction system, uses price controls (including stop trading) to prevent 
dramatic swings that might be limiting these instances of fast trading and high 
risk. It should also explain the lower percentage loss of the Nikkei during this 
period compared to the rest. 
 
 In this framework, STI exhibits the highest regularity before the event 
followed by Australia, Malaysia, Japan and Hong Kong indexes. This could be 
interpreted that the HSI experienced the strongest outbursts of fast trading, 
thereby creating high risk situations. The change of the trading pattern after the 
drawdown may reveal important information that can be of use for regulatory 
purposes. In "the recovery period", the Australian index exhibits the fastest 
trading episodes and the largest change in the measure of αmin, although this index 
did not experience the worst loss for the period but only the second after the 
Nikkei drop of 225. The latter exhibits the smallest change in trading 
irregularities. 
 
 This model accommodates a wide range of financial prices and allows 
one to identify a multiplicative measure empirically from the estimated spectra. 
The daily data multifractal spectra are quadratic, generated by log normally 
distributed multipliers M (–logbM~N(λ, σ²). Calvet and Fisher (2002) derive the 
calculation of λ from the MFS of trading time: 
      

 
2( )( ) 1

4( 1)
fθ

αα − λ
= −

λ −
                                       (12) 
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TABLE 3 
TRADING TIME MULTIFRACTAL SPECTRUM IS CHARACTERIZED  

BY LOG NORMALLY DISTRIBUTED MULTIPLIERS M (–logbM~N(λ, σ²), λ′s  
 

Trading time MFS HSI STI AORD N225 KLSE 
Before λ 1.10604 1.066398 1.048851 1.0579054 1.085247 
After λ 1.077984 1.067232 1.070063 1.0787197 1.108478 

 
 The lognormal volatility process is fully defined by the location 
parameter λ. In order to arrive at parameter estimates for λ, it is necessary to 
compute the best fit to (12) for the empirical spectrum using least square 
criterion, restricting to the left part of the spectrum. The right part is computed 
from the partition function with negative moments and is strongly affected by 
chance fluctuations.  
 
 An increased λ reflects more pronounced bursts of volatility in the 
generating process. The STI shows stability in the multifractal parameter 
estimates before and after the crash that aligns with our previous speculation on 
the trading process efficiency. In contrast, the auction only system of the 
Australian and Tokyo Stock Exchange might limit the efficiency of information 
processing and result in increased volatility after significant drawdowns. (There 
were similar changes of increased volatility observed in data on auction markets 
around the 1987 crash, although they was not as pronounced as in dealer 
markets.)  
 
 
CONCLUSIONS 
 
We must be careful to avoid premature or over-generalized empirical conclusions 
based on our results as the markets in this study differ significantly in regulation, 
access, size, and maturity. Similarly, our data samples are limited to index prices 
only. Instead, we hope in this paper to increase the awareness of a methodology 
that will facilitate the discovery of non-linear patterns in financial time series and 
the empirical application of the multifractal model of asset returns to measure 
volatility. 
 
 As a demonstration of this method, the multifractal spectra of stock index 
price time series were calculated with the wavelet transform modulus maxima 
method that eliminates some limitation of the structure function approach and 
allows access to the full spectrum of singularities and their renormalized 
densities. Data on daily stock prices for five stock indices were analyzed around 
the "drawdown" of October 1997 as complex dynamical systems reveal their 
structure and properties better under stress (in extreme conditions). A time scale 
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adapted volatility model incorporating a trading time transformation process was 
applied with the expectation of revealing the impact of the trading system on the 
price diffusion process. Evidence of information processing efficiency might be 
inferred from the multifractal trading time estimates – Hausdorff, information, 
correlation dimensions etc. and parameters of the multifractal spectrum reveal 
emerging chaotic behavior of the price process.  
 
 Such outcomes speak to the goal of this paper which is to increase 
interest in multifractal analysis of financial time series by presenting advantages 
and possible applications of a wavelet methodology. Research in this area should 
contribute to better regulation and intervention for "crisis prevention". The 
decision to design a proper regulation or even to abandon all regulation should be 
made on the basis of thorough scientific knowledge of the statistical properties of 
financial data around financial crises and on substantial factual evidence of time 
series patterns preceding crashes. We have attempted in the present paper to show 
how the development of appropriate financial crash risk models might improve 
our understanding of the market volatility dynamics that lead to the emergence of 
stock market crashes. 
 
  To this end, although we did not achieve our goal of arriving at definite 
conclusions about the non-linear price dynamics in different markets, we trust 
that we have illustrated the appropriateness of those tests for market 
microstructure research. The MMAR framework reveals information about the 
persistence in volatility measured by the Hurst exponent and the multiplicative 
cascade of trading time recovered from the multifractal spectrum. In all of the 
markets, we observe decreased minimum alphas in the trading time spectra in the 
period after October 1997. Those are indications of fast trading with high risk for 
the investors.  
 
 In future research, we hope to exploit this framework for detection of 
emerging non-linear patterns, possibly chaotic dynamics. Dynamic systems with 
low dimensional chaos possess some degree of predictability and need to be 
regulated accordingly. Therefore, we propose this framework as a useful tool for 
market microstructure research to assist in finding the most efficient way to 
organize securities trade.   
 
 A lack of proper scientific models of financial market crashes impedes 
the development of an effective supervisory system. New models arise either 
from a solid theoretical background or as a result of ample empirical evidence. 
We strongly believe that non-linear patterns of financial price series ought to be 
adequately researched with a variety of methods at different scales. Therefore, we 
advocate in this paper the use of the time scale adaptive wavelet framework and 
have described in detail the WTMM multifractal spectrum estimation 
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methodology. We performed an empirical investigation based on WTMM 
method of calculating the multifractal spectrum of daily index price series and we 
have also referred to the parameters in the MFS that can be used for detection of 
emerging chaotic patterns in dynamical systems.  
 
     Research into stock market volatility is essential for the effective 
regulation of financial institutions and for the successful management of financial 
risk. Stock market volatility has implications for economic, social and public 
welfare and influences policy decisions at the highest level of government. The 
need for better risk models has never been as evident as in recent years. 
 
     The existing regulation to reduce financial market risk not only fails to 
prevent, but may even exacerbate pending financial market crises (Daníelsson, 
2002). The problem arises from the nature of the modeling of financial market 
risk based on "normal" market conditions, where the statistical properties of data 
are very different from those in a crash period. Better knowledge of market 
crashes will possibly make more accurate assessment of regulatory impacts and 
may produce evidence against the value of existing system of regulation. 
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