
AAMJAF Vol. 20, No. 2, 211–227, 2024

Asian Academy of 
Management Journal 

of Accounting  
and Finance

THE DRIVING RELATIONSHIP OF CHINA CARBON 
PRICE BASED ON DIFFERENT MARKET VOLATILITY 

STATES

Li Ni 1,2* and Venus Khim-Sen Liew1*

1Faculty of Economics and Business, Universiti Malaysia Sarawak, 94300 Kota 
Samarahan, Sarawak, Malaysia

2School of Finance and Accounting, Anhui Economics and Management College, 230601 
Hefei, China

*Corresponding author: nili7759121@126.com; ksliew@unimas.my

ABSTRACT

The China carbon market is a market-oriented designation for addressing climate issues. 
Price mechanism is the core of carbon market, studying on the price formation can 
promote the emission reduction targets. This article conducts an autoregressive adjusted 
Markov model to classify the carbon price state, and designs a multiple regression model 
to test the driving mechanism. The results show the second order autoregressive Markov 
model of MS(2)-AR(2) model can classify the carbon price into high and low volatility 
states. Furthermore, in high volatility state, carbon price is only significantly positively 
correlated with macroeconomic factors of China Securities Index 300 (CSI300) and 
European carbon price of European emission allowance future contract (EUAF), while 
in low volatility state, carbon price is significantly positively influenced by energy market 
products JM future (JMF) and Oil, macroeconomic factor of CSI300, and European 
carbon price of EUAF. Furthermore, the impact strength is weaker than the whole sample 
regression results. The results provide reference for investors to judge carbon price and 
reveal price trends.
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INTRODUCTION

As the enhancement of global climate problems and environmental protection 
awareness, effectively curbing carbon emissions has become a key issue that 
needs to solve urgently. As one of the world’s largest carbon emitting countries, 
China’s cumulative carbon emissions in 2022 amounted to 11 billion tonnes, 
that accounting for 28.87% of global emissions according to the China emission 
accounts and datasets (CEADs). Among them, industrial emissions amounted 
to 4.2 billion tonnes, accounting for 38.18% of China’s emissions. While the 
steel industry with the highest carbon emissions among the 31 categories of 
manufacturing contributes to 15% of China’s total emissions. 

The heavy reliance on fossil energy consumption has become an obstacle 
to the economy high quality development in China. Therefore, to address the 
contradiction between economic development and environmental sustainability, 
the Chinese government proposed the carbon peak and carbon neutrality strategy 
at the 75th United Nations General Assembly in September 2020. That is the 
China aim to have carbon dioxide emissions peak before 2030 and achieve carbon 
neutrality before 2060. As a specific measure of the proposed strategy, the Chinese 
government officially launched a nationwide carbon trading market operation in 
2021 after conducting the regional carbon trading pilot projects. Generally, the 
trading mechanism of the carbon market is regarding the carbon emission rights 
as a scarce commodity for trading in the market, which encourages enterprises 
with low emission reduction costs to exceed their reduction targets, and sell 
excess emission allowance to enterprises with high emission reduction costs, and 
final help the latter meet emission reduction requirements and reduce the total 
carbon emissions cost (Byun & Cho, 2013; Liu et al., 2023). According to the data 
disclosed by the national carbon emissions trading market, as of October 2023, 
the cumulative trading volume of Chinese emission allowance (CEA) were 365 
million tonnes, with a cumulative trading volume of 19.437 billion yuan.

After two years of construction, the overall operation of China carbon 
emission trading market has been stable, the role of price discovery has begun to 
show, and the enterprises have significantly enhanced their emission reduction 
awareness, the desired construction goals have been basically achieved. The price 
mechanism is the core of carbon market (Yun et al., 2023). To improve the price 
mechanism in curbing pollutant emissions and perfecting emission reduction 
efficiency, the main task of this article are studying the market price formation 
and driving mechanism, revealing the formation process of complex carbon price 
and exploring the impact relationship of various influencing factors on carbon 
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price. Specifically, we focus on studying the carbon price driving process under 
different market volatility states, so as to provide new explanatory evidence for 
the formation of carbon premium.

LITERATURE REVIEW

Regarding the carbon price formation mechanism, previous studies mainly focus 
on revealing the carbon price driving process from the points of energy prices, 
macroeconomic factors and prices of similar products.

Firstly, in term of energy prices, the carbon allowance demand by 
polluting enterprises mainly depends on their carbon emissions. If the carbon 
allowances are relatively small compared with the actual or expected shares, the 
polluting enterprises will buy more allowances, and then promote the carbon 
price (Oberndorfer, 2009). Electricity companies are the main buyers of the 
carbon market, and their trading behaviour has a significant impact on carbon 
price (Boersen & Scholtens, 2014). The consumption of fossil fuels is directly 
related to the carbon emissions, and final affects the carbon price. The rising 
fossil energy prices will promote the carbon price, and a decreasing price will 
also lead to a declining carbon price (Lin & Jia, 2019; Hammoudeh et al., 
2014). The impact of energy products with different carbon emission intensities 
on carbon price also varies (Lilliestam et al., 2021). If the coal price rise, 
polluting enterprises will shift towards using cleaner energy such as oil and 
natural gas, resulting in lower carbon allowance demand and final reducing the 
carbon price (Jie et al., 2021; Anke et al., 2020). Wen et al. (2022) used the 
cointegration test method to find a cointegration relationship between energy 
price and carbon price, the oil price has the most significant impact on carbon 
price, followed by the price of natural gas and coal. In China, coal is the main 
source of carbon emissions. In this regard, Wang et al. (2024) conducted a 
hybrid generalised autoregressive conditional heteroskedasticity (GARCH) 
model and found that the coal prices and economic policy uncertainty 
have produced asymmetrical impacts on carbon prices. 

Secondly, in terms of macroeconomic factors, the macroeconomic impact 
the production and operation of polluting enterprises, which in turn affects the 
supply and demand of carbon allowances, triggers the change of carbon price 
(Lyu et al., 2020; Wen et al., 2020). Carbon market is operating along with the 
economic activities (Jang et al., 2024). When the macroeconomic trend is strong, 
polluting enterprises will expand their production, leading to an increase in 
carbon emissions and carbon allowance demand, which in turn, raising the carbon 
price. On the contrary, when the economy is relatively sluggish, for example the 
COVID-19 pandemic has produced a huge damage on the carbon market, the 
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enterprises production activities are less, the corresponding carbon emissions and 
carbon allowances are decreasing, the carbon price is decreasing (Christiansen 
et al., 2005; Yang et al., 2024; Zhao et al., 2023). Research indicated that the 
stock prices are an important indicator reflecting the macroeconomic and are 
closely related to the carbon market (Chevallier & Sevi, 2011; Ren et al., 2023). 
Lutz et al. (2013) studied the relationship between the price of European carbon 
emission allowance (EUA) and stock market, and a positive correlation between 
stock prices and carbon price has been detected. Using a multivariate GARCH 
model, Oberndorfer (2009) pointed out that the price change of EUA is 
positively correlated with the stock price of electricity companies, while the 
stock price change does not affects the EUA price.

Thirdly, previous studies found correlation between carbon markets of 
different regions. As the China carbon market was established relatively late, 
although the carbon market has developed rapidly, the marketisation mechanism 
has not mature enough, as a result, it inevitably be affected by spillover effects from 
the European carbon market, and the European carbon price showed an impact on 
China carbon price. When the European carbon price is decreasing, the enterprises 
production cost is also decreasing, so the export-oriented enterprises will expand 
production and export (Convery & Redmond, 2007), as a result, the Chinese 
enterprises will face greater competitive pressure, leading to significant reduction 
in production and carbon emissions, and final the carbon price is decreasing. A 
positive correlation between European carbon price and China carbon price has 
been detected in recent studies of Gao et al. (2023) and Wang et al. (2023).

In summary, previous scholars have conducted extensive research on 
the carbon price driving mechanism, that provide abundant foundation for this 
article. However, these studies may ignore a fundamental fact that the carbon 
price fluctuations are complex, and so their conclusion may be inaccurate without 
distinguishing the specific market volatility states for revealing the impact of 
influential factors on the carbon price. Actually, different volatility states and 
trends imply different carbon price driving paths. Carbon prices exhibit completely 
different characteristics in high and low fluctuation states. In order to accurately 
characterise the price formation process, it is necessary to divide the carbon prices 
into high and low states separately (Zhang et al., 2019). Therefore, the core work 
of this article is studying the driving mechanism of carbon price in different 
market volatility states. Firstly, an autoregressive adjusted Markov mechanism 
transformation model is used to reveal the carbon price volatility state. Secondly, 
a multiple regression model is designed to test the relationship between carbon 
price and its influencing factors in high and low volatility states. We hope that 
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this study can accurately capture the carbon price formation mechanism under 
different market states, so as to provide reference for investors to judge market 
situation and analyse carbon price trends.

METHODOLOGY

The research objective of this article is measuring the relationship between China 
carbon price and its influencing factors under different market volatility states. So, 
the first step is classifying the market volatility state of the carbon price, and then 
establishing a regression model between carbon price and its influencing factors.

Classifying the Carbon Price Volatility State Based on the MS(k)-AR(q) 
Model

As a type of financial time series, China carbon price has complex characteristics 
such as non-linearity, non-stationary and non-normality. For depicting these 
special characteristics, this article uses a Markov mechanism transformation 
model to classify the volatility state. Based on Hamilton’s (1989) ideal, this article 
incorporates the carbon price autoregressive term into the model, and constructs 
an autoregressive adjusted Markov mechanism transformation model: MS (k)-AR 
(q), which is expressed as follows:

R v M M Rt t ii

q
t t t1 1z f= + +

= -] ]g g/ (1)

Among them, Rt represents the carbon price series, M ∈ {1, 2, …, k} is a variable 
that describes the different market states, v is a time-dependent mechanism, and 
ϕ is a qth order auto-regressive coefficient. Mt follows a first-order Markov chain 
with a transition probability of pij = P[Mt = j/Mt-1 = i]; which means the transition 
probability from the state i in time t–1 to the state j in time t. Note that pi1 + pi2 + 
… + pik = 1. Actually, the transition probability matrix; 
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contains k2 – k parameters that controls the random behaviour of the state variable.

Furthermore, this article adopts Hamilton’s maximum likelihood method 
for parameter estimation. Under the assumption that εt is normally distributed, the 
conditional probability of Rt when the state Mt takes the value of j is:
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Among them, It–1 denotes the observed values of all variables in state Mt up to time 
t–1, and θ represents the estimated parameter vector of the whole model.

Finally, the smoothing probability of carbon price state Mt is:
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Measuring The Relationship Between Carbon Price and Its Influential 
Factors

Based on the identified carbon price volatility states, this article constructs a 
multiple regression model to measure the relationship between carbon price and 
its influencing factors under the whole sample data, high volatility states, and 
low volatility state.

R X X Xit n n it0 1 1 2 2 fb b b b f= + + + + + (4)

where Rit represents the carbon price, X1, X2, Xn mean the inluencing actors o 
carbon price, β0, β1, β2, βn represent the regression coefficients, εit re presents th e 
residual.

EMPIRICAL ANALYSIS AND DISCUSSION

Sample and Its Descriptive Statistics

This article selects the Hubei emission allowances (HBEA) from the Hubei carbon 
emission exchange as the representative variable of China carbon price. Although 
China has launched carbon market trading pilot projects in Guangdong, Hubei, 
Shanghai, Shenzhen, Guangzhou and other regions since 2012, Hubei carbon 
market has a significant leading advantage in terms of market size, enterprises 
number, market maturity and price activity.

As for the carbon price influential factors, this article selects the JM future 
(JMF) from the Dalian futures exchange, oil futures (Oil) from the China financial 
futures exchange, China securities Index300 (CSI300) from the Shanghai Stock 
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Exchange, and European emission allowance future contract (EUAF) from the 
European carbon emission trading system. All the data are ranged from 2 January 
2019 to 24 January 2024, with a total of 1,199 daily trading prices. Table 1 
shows the basic descriptive statistics of carbon price and its influencing 
factors.

Table 1
Basic descriptive statistics of carbon price and its influencing factors

Statistical indication HBEA JMF Oil CSI300 EUAF
Mean 37.698 1747.802 72.644 4236.042 55.007
Median 38.680 1645.500 73.080 4034.510 56.870
Std. Dev. 8.590 527.183 20.065 580.740 26.694
Skewness 0.012 1.027 –0.018 0.434 0.013
Kurtosis 3.481 4.648 4.019 4.235 4.332
Jarque-Bera 115.169*** 231.893*** 0.085*** 66.911*** 139.057***
Observations 1,199 1,199 1,199 1,199 1,199

Note: *** means the significance in the level of 1%.

According to Table 1, firstly, the mean price of carbon price is 37.698, with a 
median of 38.68 and a skewness of 0.012. The mean and median carbon price are 
basically close, and the skewness is close to 0. This indicates that the probability 
density of China carbon price is basically symmetrical, there is no obvious left or 
right trailing phenomenon (as shown in Figure 1). The probability of outliers in 
carbon price series is relatively small. Secondly, in terms of kurtosis, compared 
with other influencing factors, the kurtosis of China carbon price is only 3.481, 
which is close to the standard state of a normal distribution kurtosis of 3, and also 
significantly lower than other market prices. This suggests that the signal trend 
of China carbon price is basically stable, the probability of extreme shocks is 
low. While we cannot ignore the risks of volatility clustering and price 
fluctuations in the long period of carbon price as shown in Figure 1. Thirdly, 
the Jarque-Bera (JB) statistics of China carbon price and its influencing factors 
are significant at the 1% level, indicating that we need to reject the null 
hypothesis of price series normally distributed, and accept the alternative 
hypothesis that all the price series are non-normal.
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Figure 1: The daily carbon price and its distribution histogram

Classifying the Carbon Price Volatility States

This article uses an autoregressive adjusted Markov mechanism transformation 
model to classify the carbon market volatility states. During the experiment, we 
empirically measured the fitting performance of the Markov models when the states 
are 2, 3, 4, and the autoregressive orders are 2 and 3, respectively. Table 2 shows 
that when the preset state is 2, the autoregressive order is 2, the residual follows a 
normal distribution, the MS(2)-AR(2) model has the best fitting performance on 
China carbon price. That is the value of Akaike information criterion (AIC) and 
Bayesian information criterion (BIC) are 8.045 and 69.106, respectively, which 
are the minimum values among all the test models. Therefore, based on the AIC 
and BIC minimising principle, we use MS(2)-AR(2) model to classify the carbon 
market volatility state.

Table 2 
The volatility state test result of China carbon price based on the MS(k)-AR(q) model

MS(k)-AR(q) model Residual 
distribution

Number of 
parameters

Likelihood AIC BIC

MS(2)-AR(2) T 14 –2893.815 12.059 83.297
N 12 –2914.935 8.045 69.106

MS(2)-AR(3) T 16 –2884.833 16.066 97.480
N 14 –2907.988 12.050 83.287

MS(3)-AR(2) T 24 –2852.912 32.088 154.210
N 21 –2848.607 26.091 132.947

MS(3)-AR(3) T 27 –2839.127 38.097 175.485
N 24 –2839.356 32.097 154.219

MS(4)-AR(2) T 36 –2828.724 56.105 239.288
N 32 –2828.210 48.105 210.934

MS(4)-AR(3) T 40 –2827.424 64.106 267.642
N 36 –2825.074 56.107 239.290

Li Ni and Venus Khim-Sen Liew
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After conducting the MS(2)-AR(2) model, we can obtain two carbon price volatility 
states as shown in Table 3. Firstly, the average volatility of state 1 is 1.463, with 
the autoregressive coefficients are –0.295 and –.087, which are significant at the 
5% and 10% levels, respectively. The average volatility of state 2 is 6.354, with 
the autoregressive coefficients are –0.191 and –0.051, which are significant at the 
5% and 10% levels, respectively. Secondly, the transition probabilities of state 
1 and state 2 are 0.92 and 0.84, respectively, with the volatility duration periods 
are 12.49 and 6.34. This indicates that state 1 and state 2 are relatively stable and 
have strong persistence. The smoothing probabilities of the two states are shown 
in Figure 2. 

Table 3
The state classification results of carbon price based on the MS(2)-AR(2) model

State Average 
volatility (%)

AR(1) AR(2) Transition 
probabilities

State 
duration

State classification

State 1 1.463*** –0.295** –0.087* 0.92 12.49 Low volatility
State 2 6.354*** –0.191** –0.051* 0.84 6.34 High volatility

Note: ***, **, * means the significance in the level of 1%, 5% and 10%, respectively.

Thirdly, the volatility of state 2 is equivalent to 4.3 times of state 1. Therefore, 
this article considers state 1 and state 2 as the low volatility and high volatility 
respectively. Figure 2 shows the volatility of carbon price and its heterogeneity 
in low and high volatility state. Among them, we can clearly observe that the 
high volatility state not only has a high price volatility, but also has more sample 
points, and its price trend is obviously different from the low volatility state. So, it 
is necessary to test the carbon price driving mechanism based on the high volatility 
and low volatility state previously classified.

Figure 2: The carbon price trend on different market volatility state 



Testing on the Carbon Price Influential Factors Based on Different Volatility 
States

According to previous analysis, it is found that the market changes and price trends 
of the China carbon price are quite complex, meaning the impact of influencing 
factors on carbon price also exhibit complex characteristics. Therefore, to reveal 
the relationship between carbon price and its influencing factors, it is necessary to 
grasp the carbon price driving mechanism under different market volatility states. 
The following test is based on the formula (4) depicted in subsection “Carbon 
price influencing factors test based on different volatility states”.

Table 4 
Basic regression results of carbon price and its influencing factors on the whole sample

Variable Model 4_1 Model 4_2 Model 4_3 Model 4_4 Model 4_5
C 2.154***

(0.000)
0.524***
(0.000)

0.422***
(0.000)

0.500***
(0.000)

1.258***
(0.000)

HBEA(-1) 0.922***
(0.000)

0.986***
(0.000)

0.977***
(0.000)

0.959**
(0.045)

0.943***
(0.000)

JMF 0.104***
(0.000)

0.105***
(0.000)

Oil 0.027*
(0.062)

0.015*
(0.081)

CSI300 0.224**
(0.031)

EUAF 0.216***
(0.000)

0.116***
(0.000)

R2 0.974 0.973 0.974 0.974 0.974
AIC 3.489 3.517 3.512 3.503 3.494

Notes: ***, **, * means the significance in the level of 1%, 5% and 10%, respectively. Parentheses represent 
the p-value of regression results.

Carbon price influencing factors test based on whole sample

After using a multiple regression model to conduct on the whole sample data, 
the results as shown in Table 4 suggested that, firstly, the first-order lag term of 
carbon price is significant at the 1% level, and the estimated influence coefficient 
is positive. This means that the carbon price has obvious memory characteristics, 
the historical carbon price has a positive impact on the current price. Studying 
the history carbon price has a strong guiding significance for judging the current 
price. This finding is completely consistent with the study of Yun et al. (2023) that 
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carbon price has short-term memory characteristics, and it is useful to forecast 
carbon price accurately after incorporating the lag term of carbon price into the 
forecasting models.

Secondly, the regression coefficients of JMF and Oil are significantly 
positively, and the estimated influence coefficient are 0.104 and 0.105 in model 
4_1 and model 4_3, respectively, both significant at the 1% level. The estimated 
influence coefficients of Oil are 0.027 and 0.015 in model 4_1 and model 4_4, 
respectively, both significant at the 10% level. This indicates that the price rising 
of JMF and Oil will promote the carbon price. In fact, the coal and crude oil are 
both fossil fuels. When the fossil fuel price is rising, manufacturing industrial 
enterprises will face higher production costs, and the substitutes demand will be 
increasing according to economic laws. So, the carbon price will be increasing 
with the significant carbon allowance demand, as a result, a positive relationship 
between fossil energy prices and carbon price can be obtained. Those conclusions 
have also been detected in the studies of Tsai et al. (2024) and Maneejuk et al. 
(2024) that the international energy prices are basically consistent with changes 
in carbon prices, and the policies that affect energy prices will ultimately have an 
impact on carbon prices.

Thirdly, the carbon price is significantly positively correlated with the 
macroeconomic indicator CSI300, with an influence coefficient of 0.224, which 
is significant at the 5% level. CSI300 is a representative indicator of China 
macroeconomic. When the macroeconomic indicator is increasing, the strong 
social demand will drive various manufacturing industries to increase their carbon 
allowance consumption, so as to improve the carbon price. Conversely, when the 
macroeconomic indicator is declining, the production expectation of industrial 
enterprises is weak, as a result, the carbon price will be declining as the carbon 
allowance demand decreases. 

Fourthly, there is a significant positive correlation between China 
carbon price and European carbon price. Specifically, the estimated influence 
coefficients of the European carbon price EUAF in model 4_1 and model 4_5 are 
0.216 and 0.116, respectively, both significant at the 1% level. Although there 
are still obvious differences between the China and European carbon market in 
market size, mechanism construction, marketisation level, both are trading carbon 
allowance to promote the low-cost pollutant reduction mechanisms. So, the 
changes in European carbon price are basically consistent with those in China, the 
rising in European carbon price will also improve the China carbon price.
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Variable Model 4_1 Model 4_2 Model 4_3 Model 4_4 Model 4_5
C 4.009***

(0.003)
2.073***
(0.002)

1.392**
(0.031)

1.349**
(0.039)

3.051***
(0.000)

HBEA(-1) 0.838***
(0.000)

0.94***
(0.000)

0.895***
(0.000)

0.886***
(0.000)

0.873***
(0.000)

JMF 0.001
(0.154)

0.001
(0.204)

Oil 0.015
(0.256)

0.039
(0.104)

CSI300 0.006*
(0.062)

EUAF 0.020***
(0.008)

0.031***
(0.09)

R2 0.891 0.884 0.888 0.887 0.889
AIC 4.639 4.676 4.649 4.651 4.641

Notes: ***, **, * means the significance in the level of 1%, 5% and 10%, respectively. Parentheses represent 
the P-value of regression results.

The results shown in Table 5 suggested that, firstly, whether the market is in a 
high volatility state or a low volatility state, the carbon price lag performance is 
still obvious. That is, the carbon price has a significant positive long-term memory 
characteristics. For example, when the carbon price is in a high volatility state, the 
first-order lag coefficients of carbon price are 0.838, 0.94, 0.895, 0.886 and 0.873, 
in model 4_1, model 4_2, model 4_3, model 4_4 and model 4_5, respectively, all 
of the variables are significant at the 1% level. Similarly, when the carbon price is 
in a low  volatility  state, the first-order lag  coefficients  are  0.948,  0.993,  0.988, 

222

Li Ni and Venus Khim-Sen Liew

Carbon price influencing factors test based on different volatility states

The high volatility state indicates the carbon price change frequency and magnitude 
are high, there are systemic risks hidden in the market, the price uncertainty is more 
obvious. For investors, high volatility state means high loss risks, and investors 
are tend to engage in cross market investment for controlling the market risks. 
While, the low volatility state means the carbon market is in a stable equilibrium 
state that with low risk and little market change. In this state, market fundamentals 
have a significant impact on carbon price, and the lack of arbitrage space makes 
it difficult to encourage investors to take cross market arbitrage. Table 5 shows 
the basic regression results of carbon price and its influencing factors on 
high volatility state.

Table 5
Basic regression results of carbon price and its influencing factors on high volatility state
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0.974 and 0.961, in model 4_1, model 4_2, model 4_3, model 4_4 and model 4_5, 
respectively, and all of the variables are significant at the 1% level.

Secondly, in high volatility state as shown in Table 5, the carbon price is 
only significantly positively correlated with macroeconomic variable CSI300 and 
the European carbon price EUAF, while there is no significant correlation with 
other influencing factors. High market volatility state means the carbon market 
faces significant risks. For risk management considerations, investors in other 
influencing factor markets usually avoid investing in the carbon market. That is, 
carbon market investors are prone to choose macroeconomic fundamentals and 
similar market EUAF as hedging tools when facing high risks. So, the carbon 
price is positively correlated with macroeconomic indicators and European carbon 
price. 

Table 6 
Basic regression results of carbon price and its influencing factors on low volatility state

Variable Model 4_1 Model 4_2 Model 4_3 Model 4_4 Model 4_5
C 1.116**

(0.028)
0.280***
(0.000)

0.225***
(0.000)

0.329**
(0.034)

0.833***
(0.000)

HBEA(-1) 0.948***
(0.000)

0.993***
(0.000)

0.988**
(0.000)

0.974***
(0.000)

0.961***
(0.000)

JMF 0.001*
(0.064)

0.005*
(0.058)

Oil 0.059*
(0.091)

0.009*
(0.053)

CSI300 0.001***
(0.002)

EUAF 0.011***
(0.000)

0.012***
(0.000)

R2 0.974 0.988 0.988 0.988 0.988
AIC 3.489 2.765 2.763 2.754 2.746

Notes: ***,* *, * means the significance in the level of 1%, 5% and 10%, respectively. Parentheses represent 
the P-value of regression results.

Thirdly, in low volatility state as shown in Table 6, there is a significant positive 
correlation between carbon price and all influencing factors, this conclusion is 
consistent with previous findings. For example, the estimate influence coefficients 
of JMF are 0.001 and 0.005 in model 4_1 and model 4_3, respectively, both 
significant at the 10% level. The estimate influence coefficients of Oil are 0.059 
and 0.009 in model 4_1 and model 4_4, respectively, both significant at the 10% 
level. Furthermore, the carbon price is significantly positively correlated with the 
macroeconomic indicator CSI300, with an estimate influence coefficients is 0.001, 
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which is significant at the 1% level. The estimate influence coefficients of 
carbon price with the European carbon price EUAF in model 4_1 and model 
4_5 are 0.011 and 0.012, respectively, both significant at the 1% level.

Finally, it is worth noting that, although the relationship between carbon 
price and its influencing factors in low volatility state is basically consistent with 
the general regression results proposed in subsection “Carbon price influencing 
factors test based on whole sample”, the regression coefficients in low volatility 
state are significantly smaller than those of the general regression. Those findings 
indicate that under the shock of smaller market risks, the impact of various 
influencing factors on carbon price is relatively small, the driving force of carbon 
price is relatively weak. While the driving force may be enhanced as the increasing 
of market risks. The possible reason is that low volatility means low risk, and high 
volatility reflects high risk. Driven by chasing profit, investors tend to allocate 
cross market funds in high volatility market state, resulting in stronger driving 
force of the carbon price.

CONCLUSION

With the increasing attention on global climate issues, China, as one of the 
world’s largest greenhouse gas emitters, is facing series environmental pressure. 
In this background, to address the constraints of environmental issues on 
sustainable economic growth, the Chinese government officially implemented 
the carbon peak and carbon neutrality strategy in September 2020. As a market-
oriented mechanism for implementing the proposed strategy, accelerating 
the carbon market construction has become a specific measure to achieve the 
emission reduction goals. The carbon market plays an actively role in helping 
China reduce the carbon emissions. The higher the market operation 
efficiency, the more significant performance of emissions reduction. Therefore, 
studying the price formation and determination mechanism of the carbon 
market, explaining the transmission path of carbon premium are the keys to 
promote the carbon emission reduction and achieve the target of carbon peak 
and carbon neutrality. This article focuses on the special characteristics of the 
carbon market, conducts multiple regression model on different carbon price 
volatility states, and reveals the driving mechanism of carbon price. That is, an 
autoregressive adjusted Markov mechanism transformation model is used to 
classify the carbon price states. In addition, a multiple regression model is 
conducted to test the influential path of carbon price formation in different 
states. The major conclusions are as follows:
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Firstly, the autoregressive adjusted Markov model MS(2)-AR(2) can 
effectively fit the complex China carbon price, the price can be classified into 
low volatility state and high volatility state with the average volatility of 1.463 
and 6.354, respectively. Secondly, in high volatility state, the carbon price is 
only positively influenced by macroeconomic factors CSI300 and similar carbon 
price EUAF, while in low volatility state, carbon price is significantly positively 
influenced by energy market products of JMF and Oil, macroeconomic factors 
CSI300 and similar carbon price EUAF. However, this impact is significantly 
weaker than the general regression results in a higher market risk. This evidence 
shows that compared with low market risk state, the high market state can bring 
more risk premium for investors. Driven by chasing profit, investors tend to take 
on some systemic risks for obtaining potential excess returns, resulting in more 
factors driving the carbon price formation in high volatility state.
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