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ABSTRACT 
 
This paper attempts to determine the best alternative model of options pricing with the 
capacity to control both the level of skewness and kurtosis. It aims to replicate the 
effectiveness of classic stochastic and deterministic option pricing models and also 
establish a correlation between the underlying stock returns and their volatility. The 
paper follows a structural approach for analysing the Hull-White model (with two 
stochastic versions: non-related and correlated) with respect to the Black-Scholes model, 
which is a benchmark model. The focus is on fabricating such a model for predicting and 
protecting the market options price during uncertain financial upheavals. The suggested 
models have been tested in extreme conditions to determine effectiveness. Furthermore, 
the paper also examines the hedging effectiveness of hypothecated models.  
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INTRODUCTION  
 
Based on the framework of geometric Brownian motion and its counterpart 
Wiener (1938) process, Black and Scholes (1973) and Merton (1973) derived the 
formula for pricing European call options. The Black-Scholes-Merton (BSM) 
model assumes that the underlying assets follow a log-normal distribution pattern 
with constant drift and diffusion. The BSM model also assumes that the 
parameters viz. drift and diffusion (volatility) remain constant throughout the life 
of the option. However, in reality, the juxtaposition of implied volatility, 
moneyness and maturity manifests a smile. Further analysis revealed that the 
non-normality of the return distribution of the underlying assets and volatility 
clustering (serial autocorrelation of asset return) causes smile (Black, 1975; Cox 
& Ross, 1976; Johnson & Shanno, 1987; Merton, 1976a, 1976b; Scott, 1987; 
Stein & Stein, 1991, Wiggins, 1987). The flock concatenated smile to orderly 
mispricing of options across moneyness and maturity. Later, the cause of the 
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pricing error of Black-Scholes (BS) model was revealed to be rooted mainly in 
the model itself. The unrealistic theoretical assumptions of the model, namely 
financial characteristics such as non-normal distribution of the asset’s return 
(Figure 1), leverage effect (Figure 2) and volatility clustering (Figure 3), found in 
almost all tradable financial asset return series data, were responsible for the 
pricing bias.  
 

Theoretical and empirical discrepancies of BS triggered the development 
of more advanced and complex stochastic volatility models, which focus on 
random dynamics and the interplay of asset returns, including return volatility. 
These models were based on the assumption that, for complex volatility models, 
the solution of the Partial Differential Equation (PDE) of BSM would not be a 
difficult task. However, this was not the case, as the solution of a PDE in a 
stochastic framework mainly depends on the risk preferences of traders; creation 
of a riskless portfolio was not possible when only an option and its underlying 
assets were available for trading. However, in cases when volatility is also 
available for trading, then perfect hedging would be achieved, and the criteria of 
a risk free solution for a PDE could thus be met. Therefore, to mitigate the risk of 
volatility, risk premium was introduced into the theory of options pricing. Scott 
(1987), Johnson and Shanno (1987), Wiggins (1987), and Hull and White (1987, 
1988) generalised the framework of Black-Scholes and set the foundation for the 
development of stochastic models in options pricing.  
 

The stochastic volatility model, proposed by Scott (1987), is based on the 
assumption that volatility follows a continuous diffusion process. Johnson and 
Shanno (1987) assumed a correlation between stock returns and return volatility, 
whereas Wiggins (1987) assumed a hopscotch finite difference method. To 
incorporate the random dynamics of asset pricing into option pricing models, 
Hull-White (1987) focused on the development of a more realistic and 
appropriate pricing method/model and achieved first success in developing a 
scientific approach to value ‘options’. By modelling the inter-dynamics of asset 
pricing and its volatility, they had laid the foundation for new era in option 
pricing. Empirical studies have revealed that the models that incorporate a 
correlation between asset price and return volatility are more consistent with 
fatter tails in the asset return distribution and are thus closer to reality. To price 
options, HW87 employs Taylor’s power series approximation on the average 
value of the stochastic variance of assets. The model of HW87 is based on the 
assumption that not only the return of the assets, but also their volatility, is 
stochastic (random) in nature. Hull and White hypothesised that, when volatility 
is itself volatile, available information is of no use to traders because is 
insufficient for determining future levels of volatility. This assumption created a 
dilemma for traders and investors, as it invalidated the conceptual framework of 
fundamental and technical analysis (indirectly). Hull and White further stated 
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that, in cases when asset price follows a random volatility process, the investors 
are exposed to a risk in addition to the risk of random evolvement of asset price 
process. This scenario implies that option price can change even if there is no 
change in the price of its underlying assets during the life of an option because 
the volatility process alone is strong enough to change the option price. To 
provide an appropriate model for option pricing, Hull-White conceptualised 
another framework. Whereas the first version modelled an asset’s price and its 
volatility as a stochastic process and assumed that there is no correlation between 
them, in the second framework they assumed a correlation between the two 
processes and extended the first framework to incorporate the leptokurtic 
behaviour of asset return and smile together. However, contrary to their earlier 
counterparts, they did not allow negative volatility processes in the modelling of 
options pricing.  

 
Post-Hull-White, a series of stochastic models came into existence, but 

few of them managed to retain the attention of practitioners and researchers. The 
stochastic models of Heston (1993) and Heston-Nandi (2000), Implied Binomial 
Trees model of Rubinstein (1994), Derman and Kani (1994), and Dupire (1994), 
ARCH models of Engle (1995), stochastic jump diffusion model of Bates (1996), 
DVF model of Dumas, Fleming and Whaley (1998) and affine jump-diffusion 
model of Duffie, Pan and Singleton (2000) are some models that managed to gain 
some popularity.  These models all suffered from the common weakness that the 
estimation of model parameters characterising stochastic volatility is quite 
computationally intensive.  

 
Thus, to provide a more focused approach, we tested the applicability of 

the benchmark BS model (Black & Scholes, 1973) and its stochastic counterpart, 
Hull and White (1987, 1988). Despite different assumptions, both models remain 
the most dominant models of their type amidst analytical tractability. To evaluate 
the stability/robustness of these models during the most dynamic and turbulent 
financial changes, the models have been put through a complete cycle of 
financial swings. Furthermore, the models are passed through the data collected 
from the most steady-unsteady period of Indian financial frames. This phase in 
particular shows an extreme amount of unpredictability and thus provides the 
most apt situation for testing the relative competitiveness of the models. As the 
models will consider the extreme range of market (index) movements, the real 
time applicability of models becomes more feasible.  

 
As all of the parameters of the BS model except volatility are directly 

observable from the market, the model’s performance largely depends on the 
quality of volatility. Though there are several methods to measure volatility, only 
few of them are dominant. Generally, practitioners measure volatility in two 
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ways: looking backward and looking forward. The implied volatility (IV), 
obtained from the market option prices, has been found to be forward looking. As 
IV incorporates market information embedded in options prices, it reflects the 
future volatility of the underlying asset and is thus very popular (Day & Craig, 
1992; Edey & Elliot, 1992; Canina & Figlewski, 1993; Christensen & Prabhala, 
1998; Ederington & Guan, 2002). We therefore utilised IV as an input in BS to 
determine the price of Nifty index options. 

 
To justify a study pertaining to Nifty index options of India, we have 

compared and contrasted the log normal distribution of Nifty with its global 
counterparts such as FTSE 100, KOSPI, Nikkei 225, TAIEX, and RUSELL 2000. 
Figure 1 provides strong support to the question of “why India?” Figure 1 clearly 
exhibits that log normal frequency distribution of Nifty is most unique as it has 
the longest tails on both sides (for sample period January 2000–September 2013). 
Table 1 also clearly exhibits that, when comparing the six indices, the return 
distribution of Nifty is most unique and depicts the highest value of Kurtosis and 
Jarque-Bera (test of non-log-normality). The same pattern is also observed for the 
sample in this study (2006–2011). This finding implies that during the period of 
study, investors had great opportunity for extreme positive and negative returns 
while trading at Nifty. Furthermore, the positive value of skewness of Nifty also 
qualifies it for the purpose of this study. Other than Nifty, the skewness of all 
other global indices is negative (Table 1). Kurtosis of the Nifty supports the 
conclusion that, during the period 2006–2011, the probability of occurrence of 
extreme returns was more likely for Nifty compared to its global counterparts. At 
the same time, the probability of scenarios of extremely negative returns was not 
as likely. Accordingly, this research paper mainly focuses on inventing and 
determining the best alternative option pricing model that can define the right 
distributional assumptions for pricing S&P CNX Nifty 50 index option of India.	
  	
  
	
  

In addition to the distribution characteristics, the growing literature on 
option prices and exponential growth of Nifty index options on the bourse of 
National Stock Exchange (NSE) of India also motivated us to investigate the 
inter-competence of the two models in the Indian context. The only issue that 
needs to be managed effectively is the calibration of the model parameters. To 
determine the parameters of models and make these models consistent with 
market prices, this research paper has utilised the method of optimisation. The 
remainder of the paper is structured as follows: The section entitled ‘Option 
Pricing Process’ details the basic assumptions and properties of the BS and Hull 
and White pricing processes. Section ‘Data Description’ explores the data 
screening procedure of Nifty index options and briefly reviews the parameters 
estimation methods. Section ‘Out-Of-Sample Pricing Performance' discuses the 
empirical results and critically examines the relative perfection of BS and HW. In 
addition, this section also briefly reviews the hedging effectiveness and 
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correlation sensitivity of Hull and White models.  The last section finally 
concludes the study. 
	
  
Table 1 
Statistics of frequency distribution of global indices 
 

 

 
Financial Characteristics of Nifty 
 
Figures 1–4 display various financial characteristics of Nifty index options that 
are vital for the applicability of option pricing models and also for the pricing of 
index options underlying the Nifty index. Figure 1 shows that, for the period of 
study, the frequency plot of Nifty index return is non-lognormal. Researchers 
rooted smile led prices bias of BS to this non-log normality of assets prices.  
Figure 2 provides evidence that the Nifty index return, and its implied volatility, 
are strongly negatively correlated, whereas Figure 3 shows that the asset return 
volatility tends to imply a mean reverting stochastic volatility process. Together, 
all three financial characteristics create the view that parameters of the HW 
stochastic volatility process (estimated from option prices) can be used to 
produce reliable predictions of the day-ahead relationship between Nifty index 
option prices and its index levels. The smile pattern exhibited in Figure 4 reveals 
the existence of unique implied volatilities for different sets of maturity and 
strike. Consequently, accurate pricing and hedging of options become typical 
tasks to achieve within the standard BS framework. However, in the stochastic 
framework of Hull and White, achieving accurate pricing and hedging is more 
challenging.  
 

  FTSE_100 KOSPI NIFTY NIKKEI_225 TAIEX RUSELL_
2000 

  January 2000–September 2013 

 Skewness –0.14 –0.54 –0.28 –0.42 –0.17 –0.28 

 Kurtosis 8.88 8.19 10.58 9.26 5.25 7.2 

 Jarque-Bera 5006.69 3988.73 8272.25 5620.24 742.25 2586.47 

 Observations 3,473 3,402 3,434 3,378 3,433 3,456 

  January 2006–December 2011 

 Skewness –0.11 –0.56 0.01 –0.53 –0.38 –0.3 

 Kurtosis 9.35 9.46 10.06 11.46 5.43 6.82 

 Jarque-Bera 2545.47 2713.91 3146.4 4579.6 406.97 941 

 Observations 1,513 1,513 1,513 1,513 1,513 1,513 
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Figure 1. Log non-normal distribution of return of Nifty and its global 
counterparts (January 2000–September 2013) 
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Figure 2. Leverage effect of Nifty index 

 
 

 
 

Figure 3. Volatility clustering of Nifty index return 
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Figure 4. 3-D volatility smile surface of Nifty index options, observed on 24 October 
2008 (Parameters: S = 2584, K = 2000 : 3000, r = 7.18%, q = 0, T = 5 : 90 Days) 

 

OPTION PRICING PROCESS 
 
Black–Scholes–Merton 
 
The ‘No Arbitrage Argument’ is one of several generic approaches to asset 
pricing. This approach is also the essence of the benchmark BS partial 
differential equation (PDE), which can be solved numerically for various asset 
classes, even with special cases.  
 

Black, Scholes and Merton assumed that the asset price follows a 
geometric Brownian process (Karatzas & Shreve, 1991) driven by a source of 
randomness, Wt:  
                                                   dS = µSdt +σSdWt            

Where µ  is the expected rate of return also known as drift rate (in the BS 
framework it is same for all investors) and σ is the volatility of asset returns—
both assumed to be constant. Their path breaking formula for pricing European 
call option is: 

CBSM = S.N(d1)− X.e
−rT N(d2 )                
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 S is the current stock price, X is the option’s strike price, r is the continuously 
compounded risk-free interest rate, T is the time to maturity in years, σ is the 
standard deviation of the price of the underlying stock, and N(d) is the Gaussian 
distribution function.  
 
Implied volatility 
 
This method is the reverse approach to finding volatility. Instead of specifying a 
mathematically complex model and estimating its parameters, this method 
matches the cross-section of option prices with Black-Scholes model prices and 
calculates the volatility independent of the model parameters. Accordingly, this 
volatility is also known as model-free implied volatility. For the calculation of 
implied volatility, the choice of moneyness is extremely important. For example, 
the implied volatility extracted from the market data set often exhibits a smile. To 
adjust for this, researchers used at-the-money implied volatility for forecasting 
the prices of financial assets. Although this method alleviates the “smile” 
problem to some extent, it also discards the usage of all potential information 
contained in the rest of the option prices. To circumvent this outcome, we banked 
on parametric implied volatilities and extracted the implied volatility from a set 
of option prices, thereby ensuring the incorporation of all the information 
embedded in the option prices across moneyness and maturities. These 
volatilities are further utilised to forecast future expectations of the market 
participants; hence, this approach constitutes a forward-looking estimate of the 
volatility of the underlying asset. The calibration procedure of the implied 
volatility is discussed in section entitled Data Description–Calibration of 
Competing Models of this paper. 
 
Hull-White (1987) 
 
As stated earlier, to fulfil the empirical deficiencies of Black-Scholes, Hull and 
White (1987) developed a stochastic model. They assumed that the asset price 
and the instantaneous variance follow the following stochastic process in a risk-
neutral world: 
   dS= bStdt+σStdz  
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   VdwVdV ξα +=  

Where, b and α  are the drifts of the asset price and variance respectively; V is 

the variance i.e. 
2σ=V , ξ is the volatility of the variance; dz and dw are 

independent Wiener processes, therefore meaning that the asset price and 
volatility are not correlated; and α 	
   and ξ are independent of S. The option 
pricing formula of Hull-White relies on the distribution of the average variance V 
of the asset price process over the life of the option defined by the stochastic 
integral  

   ∫= vdvhvCC tHW )/()( 2
87 σ

 

Where )(vC is the BS formula with its usual notations, and v is the mean 
variance over the lifetime of the option, mathematically defined as   

∫−
=

T

t

dtt
tT

V ,)(1 2σ
 

Similar to BS, HW (1987) found that  the  conditional  distribution  of  the  
terminal  asset  price is  also log-normally  distributed.  However, the risk-neutral 
dynamics of the volatility do not depend on the asset price S.  The previous two 
expressions do not exist for cases in which asset price and volatility are 
correlated. As the formula of HW is independent of investors’ risk preferences, it 
does not incorporate risk premium in the option-pricing model, defined as    
   

 TTTT
tTr dSvSSfTvSCetvSC ),/(),,(),,( )( ∫−−=

            

Where f(ST |S, v) is the conditional distribution of asset price (ST) and variance at 
time t;  C(ST, vT, T)  is the traditional payoff function defined as max{ST – K, 0}.  
Utilising Taylor’s series (Taylor, 1986), they expanded the above model with 
expected values and derived the option pricing formula  
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Hull and White (1988) Correlated Stochastic Volatility Model  

To rectify the empirical discrepancies of their own model, Hull and White (1988) 
conceptualised a new framework for stochastic volatility options pricing. The 
new framework dealt with controlling the non-lognormal characteristics of assets 
returns. To improve on the prior framework, they offered a more flexible 
distributional structure and relaxed the zero correlation restriction of Hull and 
White (1987). However, as with the previous version, they assumed that the asset 
price and its volatility follow a square root stochastic volatility process, defined 
as 

    dzVSdtSdS += µ      

    

€ 

dV = (α + βV )dt + ξ V dw     

 Similar to Hull and White (1987), dz and dw here are Wiener processes 
with correlation ρ , and ξ is the instantaneous volatility of the volatility V . As, 

in an absolute sense, volatility cannot be negative, the term Vβα +  ensures a 
positive instantaneous variance (V) between the asset return and volatility. 
 

Again utilising the second-order Taylor series expansion, Hull-White 
developed a closed form approximation around a constant volatility specification 
(ξ = 0) and developed the closed-form approximation for pricing European call 
option under stochastic correlated framework, defined as 

 
                       2

21088 ξξ fffCHW ++≈    

                   Where 0f  is the benchmark BSM formula )(0 VCf = .  
 
The price bias added to the BS formula yields the stochastic-volatility adjusted 
call price. However, in cases where the variance is constant, i.e. 0=ξ , Hull and 
White (1988) will converge with the traditional BS. 
 

DATA DESCRIPTION  
 
Figure 1 implicitly shows that the period of 2006–2011 was a dynamic one for 
traders and investors. This timeframe tested not only the quality of all entities 
related to capital markets, but also the robustness of their financial mathematical 
models. In the midst of this time frame, Nifty peaked early but then felt the 
impacts of the global financial crisis. However, it soon rose steadily but did not 
reach its previous high. Since then, Nifty’s growth has been sluggish. In the 



Vipul Kumar Singh and Naseem Ahmad 

138 

beginning of 2006, the Indian economy expanded at its fastest pace, but it later 
slowed down. Accordingly, we identified this specific period for our research to 
test the effectiveness of stochastic HW and deterministic BS models. This period 
provides the best laboratory conditions to gauge the effectiveness of appropriate 
models and to measure the pros and cons of options pricing. To identify the most 
appropriate model, we have tested the models using data from this timeframe 
with the assumption that the best model will hold during any type of trading 
scenario. To determine the empirical performance of the models, we collected the 
historical data of S&P CNX Nifty 50 Index option contracts for the period 
specified, i.e. data for 1487 trading days. We have also collated the interest rate 
data yield of “91 Day T-Bill” for the period specified, i.e. 1 January 2006 to 31 
December 2011. The data set was collected manually from the official browsers 
of the National Stock Exchange (NSE) and the Reserve Bank of India (RBI). 
Data on option type, strike price, underlying index price, maturity date and risk 
free interest rate have been cleaned and merged.  
 
Data Screening Procedure  
 
To ensure that the raw data are ideal to test the conceptual framework of Black-
Scholes, and Hull-White (1987, 1988), we passed the sample data through five 
exclusionary filters, applied in sequence. Accordingly, we have tried to remove 
the irregularities in the options data, considered to be sensitive for our pricing 
analysis. First, call option prices not satisfying the arbitrage-cum-lower boundary 
conditions 

€ 

Max 0,S − X,St − X e
−r (T − t )( ) ≤CMarket ≤ S  were removed from the 

data set. Thereafter, illiquid and extremely sensitive options not satisfying the 
conditions such as number of trading contract/open interest equal to zero, number 
of traded contracts less than 50, maturity T > 90 and T < 3 days and moneyness 

+15% <
S
X
−1

"

#
$

%

&
' and

S
X
−1

"

#
$

%

&
' < −15% were discarded from the data set. The above 

exclusionary filters resulted in the rejection of over 94% of the sample option 
data. Table 2 displays the descriptive summary statistics for the Nifty index 
option during the period specified. 
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Table 2  
Filter statistics of Nifty index call options (2006–2011) 

   Year Sub 
Total 

   2006 2007 2008 2009 2010 2011 2006–
2011 

Total Call Contracts  44,555 38,890 72,494 93,860 95,008 17,9695 52,4502 

Criteria Data Rejected 
No Trading 
Volume/Open Interest 35,304 29,052 56,835 75,785 76,514 157,009 430,499 

No. of Traded Contracts 
≤ 50 5,182 4,163 7,216 9,137 6,481 7,394 39,573 

Moneyness > +15% 170 366 211 1,459 1,055 1,132 4,393 

Moneyness < -15%  84 9 1,866 738 263 2,673 5,633 

Maturity > 90 Days  0 2 543 390 1,533 2,029 4,497 

Maturity < 3 Days  385 490 551 486 502 520 2,934 
No Arbitrage 
Relationship 584 573 123 196 932 989 3,397 

Rejected Data   41,709 34,655 67,345 88,191 87,280 171,746 490,926 

Rejected Data 
(%)     93.61 89.11 92.90 93.96 91.87 95.58 93.60 

Remaining Data   2,846 4,235 5149 5,669 7,728 7,949 33,576 

Remaining Data (%)   6.39 10.89 7.10 6.04 8.13 4.42 6.40 

 
Option Categories  
  
To provide a tabular and sequential analysis, we framed moneyness in five 
categories and maturity in three categories. The moneyness (S-X)/X groups are 
categorised as:  
 

             

€ 

DOTM
OTM
ATM
ITM
DITM

" 

# 

$ 
$ 
$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 
' 
' 

if moneyness SK −1( )

∈ −15%,−10%[ )
∈ −10%,−5%[ )
∈ −5%,+5%[ ]
∈ +5%,+10%( ]
∈ +10%,+15%( ]

* 

+ 

, 
, 
, 

- 

, 
, 
, 

 

Whereas maturity (T) is grouped as:  
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ShortTerm
MediumTerm
LongTerm

!

"

#
#
#

$

%

&
&
&
if Timeto Maturity(T )

∈ 5, 30[ ] Days

∈ 30, 60( ] Days
∈ 60, 90( ] Days

(

)
*

+
*

 

The combination of these two factors resulted in fifteen categories of moneyness-
maturity. We then categorically placed the filtered data in this matrix 
composition. Table 3 displays the summary statistics of this matrix. The 
following abbreviations have been used throughout this paper: DOTM: deep-out-
of-the-money, OTM: out-of-the-money, ATM: at-the-money, ITM: in-the-
money, and DOTM: deep-in-the-money. 
 
Table 3  
Descriptive statistics of Nifty index call option  for the year 2006-2011 (post filtration) 
 

    Call Moneyness ((S/K)-1) Total/Sub               
Total   DOTM OTM ATM ITM DITM 

Maturity  

Short 
2,511 3,287 8,169 1,498 607 16,072 

7.48% 9.79% 24.33% 4.46% 1.81% 47.87% 

Medium 
1,737 2,706 6,049 1,011 259 11,762 

5.17% 8.06% 18.02% 3.01% 0.77% 35.03% 

Long 
869 1,681 2,939 210 43 5,742 

2.59% 5.01% 8.75% 0.63% 0.13% 17.10% 

Total/Sub Total 
5,117 7,674 17,157 2,719 909 33,576 

15.24% 22.86% 51.10% 8.10% 2.71% 100.00% 

 
Performance Evaluation Methodology  
 
To determine the relative competence and out-of-sample forecasting 
competiveness of the models, we juxtaposed HW and BS relative to the market. 
Furthermore, to ensure the quality of analysis, we employed the techniques of 
error metrics viz. Percentage Mean Error (MPE) and Mean Absolute Percentage 
Error (MAPE) to determine the parities of the models. The mathematical 
expressions of the two error metrics are  

Mean Percentage Error (MPE) = 1
n

Ci
Model −Ci

Market( )
Ci

Market

"

#
$
$

%

&
'
'i=1

n

∑   
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Mean Absolute Percentage Error (MPE) = 1
n

Ci
Model −Ci

Market( )
Ci

Market
i=1

n

∑  

Where 

€ 

Ci
Model  and 

€ 

Ci
Market

 is the expected and market price of the ith observation, 
and n is the total number of observations. Positive (negative) MPE implies that 
the model overprices (under prices) specific options, while the value of MAPE 
helps determine whether the model provides a good approximation relative to the 
market.    
 

Calibration of Competing Models 
 
In a stochastic environment, the calibration of parameters is extremely 
cumbersome. However, studies reveal that the stable parameters can be deduced 
to the closest proximity by minimising the price bias of the model and the 
market, independent of stochastic and deterministic framework. This process is 
widely known as optimisation (Rubinstein, 1985; Rouah & Vainberg, 2007). The 
simplest generalised optimisation function is )(Ωf   

          

€ 

f (Ω) =min
Ω

CModel −CMarket[ ]2
i=1

n

∑                            

Where Ω  is a set of vector parameters of models to be calibrated daily. The 
optimal set of parameters extracted from the previous day will be embedded in 
the models to price the current day options. This estimation procedure is repeated 
for each day of the sample data. The advantage of this method is that, in addition 
to providing stable parameters, it also incorporates information from the market 
(inherent in the historical data of underlying asset) in the option prices. However, 
compared to BS, calibration of Hull and White (1987, 1988) models is quite 
complex because, in the latter model, four parameters need to be estimated 
concurrently whereas in the former model, only one, i.e. implied volatility (IV), 
is required. 
 

OUT-OF-SAMPLE PRICING PERFORMANCE  
 
To analyse the competiveness of the classic Black-Scholes model versus 
stochastic Hull-White models (Hull and White, 1987, 1988), we examined the 
pricing correlations between the models. We thoroughly evaluated various 
combinations of moneyness and maturity depicting volatility, price and error 
statistics of BS and HW’s. Tables 4, 5, 6 and 7 display descriptive statistics of 
these combinations. The outcomes of cross-sectional, comparative and analytical 



Vipul Kumar Singh and Naseem Ahmad 

142 

study of the given tables will decide how the models compare to one another. 
This section is intended (moneyness-maturity wise) to identify the best model in 
a particular category, based on the relative error performance. 
 

Table 4 displays the dependence of implied volatility on maturity and 
moneyness. It clearly supports the empirical research work of Merton (1976 a, b), 
Scott (1987), Johnson and Shanno (1987), and Wiggins (1987) and finds that 
implied volatility varies systematically with respect to maturity and moneyness. 
Table 4 also shows that implied volatility tends to vary from DOTM to DITM 
options and makes a systematic upward trend when it deviates from ATM.  
However, the variation in implied volatility ranging from DOTM to DITM is 
highest in the case of BSM followed by HW87 and HW88. This variation depicts 
the models’ volatility smile capturing capacity. Table 4 demonstrates that HW88 
explains the smile phenomenon more profoundly.  

 
Table 4  
Implied Volatility Statistics of Black-Scholes & Hull-White’s model 

 

Models   DOTM OTM ATM ITM DITM Total 

  Moneyness Statistics 

BS IV 
Average  0.21 0.20 0.19 0.21 0.25 0.20 

Std. Dev. 0.09 0.09 0.08 0.08 0.09 0.08 

HW87 
Average  0.21 0.20 0.19 0.21 0.26 0.21 

Std. Dev. 0.10 0.11 0.08 0.07 0.09 0.10 

HW88 
Average  0.20 0.20 0.18 0.21 0.24 0.20 

Std. Dev. 0.10 0.10 0.07 0.09 0.10 0.10 

 No. of 
Observations 5117 7674 17157 2719 909 33576 

   Moneyness-Maturity Statistics   

                 Time to maturity (T ≤ 30) 

BS IV 
Average  0.23 0.22 0.20 0.22 0.25 0.21 

Std. Dev. 0.10 0.09 0.08 0.08 0.10 0.09 

HW87 
Average  0.21 0.20 0.19 0.21 0.25 0.20 

Std. Dev. 0.13 0.11 0.11 0.11 0.12 0.12 

HW88 
Average  0.20 0.20 0.19 0.20 0.24 0.20 

Std. Dev. 0.11 0.11 0.11 0.14 0.17 0.13 

 
No. of 

Observations 2511 3287 8169 1498 607 16072 
 

(continued on next page) 
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Table 4 (continued) 
 

Models   DOTM OTM ATM ITM DITM Total 

  Time to maturity  (30 < T ≤ 60)  

BS IV 
Average  0.22 0.20 0.19 0.21 0.26 0.20 

Std. Dev. 0.10 0.09 0.08 0.08 0.09 0.08 

HW87 
Average  0.22 0.20 0.18 0.20 0.25 0.20 

Std. Dev. 0.15 0.14 0.14 0.14 0.13 0.14 

HW88 
Average  0.22 0.19 0.18 0.20 0.25 0.21 

Std. Dev. 0.13 0.12 0.13 0.09 0.12 0.11 

 
No. of 

Observations 1737 2706 6049 1011 259 11762 

  Time to maturity  (60 ˂ T ≤ 90)  

BS IV 
Average  0.17 0.16 0.16 0.17 0.20 0.16 

Std. Dev. 0.06 0.06 0.05 0.06 0.06 0.06 

HW87 
Average  0.08 0.15 0.14 0.16 0.19 0.15 

Std. Dev. 0.16 0.05 0.06 0.05 0.05 0.08 

HW88 
Average  0.16 0.15 0.14 0.16 0.19 0.15 

Std. Dev. 0.08 0.05 0.08 0.05 0.05 0.08 

  
No. of 

Observations 869 1681 2939 210 43 5742 

 
Table 5 shows the price statistics of S&P CNX Nifty Index call options 
(moneyness-maturity) for the time period ranging from 1 January 2006 to 31 
December 2011. It shows that the values of call options depend on moneyness 
and maturity. The price pattern exhibited in Table 5 validates the theory of option 
prices as the maturity-moneyness sequences of call options follow the ascending 
order understood by the series: DOTM < OTM < ATM < ITM < DITM and short 
term < medium term < long term. 
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Table 5  
Price statistics of Black-Scholes & Hull-White’s models 
 

Models  DOTM OTM ATM ITM DITM Total 

 Moneyness Statistics 

Market 
Average  15.16 38.37 145.49 377.23 547.62 130.80 

Std. Dev. 21.92 37.52 88.51 94.85 124.88 138.82 

BS 
Average  15.63 39.59 144.02 372.87 539.50 129.82 

Std. Dev. 25.13 40.33 88.47 93.79 124.25 137.39 

HW87 
Average  15.61 38.79 148.04 369.63 546.80 125.79 

Std. Dev. 22.65 45.00 78.46 88.77 116.25 126.23 

HW88 
Average  14.44 35.98 142.37 372.52 543.63 128.76 

Std. Dev. 20.90 43.43 76.81 82.38 115.49 122.20 

 No. of Observations 5117 7674 17157 2719 909 33576 

  Moneyness-Maturity Statistics  

  Time to maturity (T ≤ 30) 

Market 
Average  6.17 17.43 106.54 352.24 539.23 111.88 

Std. Dev. 10.12 22.14 76.78 89.65 121.37 142.42 

BS 
Average  5.08 16.12 103.43 346.28 530.58 108.98 

Std. Dev. 11.17 22.56 74.99 87.53 119.79 140.23 

HW87 
Average  6.32 18.08 109.45 343.89 530.11 109.35 

Std. Dev. 11.62 26.08 80.12 88.21 119.02 139.01 

HW88 
Average  6.76 17.34 108.19 348.22 533.92 111.86 

Std. Dev. 10.89 25.22 80.67 86.45 117.67 137.98 

 No. of Observations 2511 3287 8169 1498 607 16072 
 

(continued on next page) 
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Table 5 (continued) 
 

Models  DOTM OTM ATM ITM DITM Total 

 Time to maturity  (30 < T ≤ 60) 

Market 
Average 21.89 47.73 171.06 396.51 549.19 148.36 

Std. Dev. 26.60 39.00 83.72 86.54 121.47 137.17 

BS 
Average 23.21 50.09 170.14 393.92 542.99 148.27 

Std. Dev. 30.63 41.42 83.09 85.30 122.69 135.76 

HW87 
Average 24.08 49.98 168.67 398.67 545.12 148.04 

Std. Dev. 33.46 45.59 76.84 82.79 102.31 128.20 

HW88 
Average 22.62 46.93 171.02 396.56 547.38 146.02 

Std. Dev. 32.21 44.69 76.31 82.01 99.07 124.26 

 No. of 
Observations 1,737 2,706 6,049 1,011 259 11,762 

  Time to maturity  (60 ˂ T ≤ 90)  

Market 
Average 27.68 64.27 201.10 462.61 656.64 147.78 

Std. Dev. 25.29 36.76 79.17 98.17 144.09 124.29 

BS 
Average 30.96 68.55 203.06 461.26 644.49 150.38 

Std. Dev. 28.50 39.68 79.93 96.46 147.39 123.51 

HW87 
Average 29.21 68.51 206.79 467.73 641.36 149.09 

Std. Dev. 22.87 33.32 78.43 88.32 147.42 122.47 

HW88 
Average 26.02 62.76 202.67 464.49 646.67 148.97 

Std. Dev. 20.61 36.39 73.45 83.67 151.73 118.37 

 No. of 
Observations 869 1,681 2,939 210 43 5,742 

 
Table 6 demonstrates the price effectiveness of the models underlying their cross-
sectional and comparative Mean Percentage Error (MPE) analysis across 
moneyness and maturity groups.  
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Table 6 
Mean percentage price bias statistics of Black-Scholes & Hull-White’s models 
 

Models   DOTM OTM ATM ITM DITM Total 

  Moneyness Statistics 

BS 
Average  –0.28 –0.07 –0.01 –0.01 –0.02 –0.06 

Std. Dev. 0.61 0.45 0.17 0.04 0.02 0.35 

HW87 
Average  –0.25 –0.05 0.03 0.04 –0.01 –0.04 

Std. Dev. 0.67 0.44 0.19 0.03 0.04 0.32 

HW88 
Average  –0.23 –0.04 0.03 0.03 –0.03 –0.03 

Std. Dev. 0.69 0.41 0.19 0.04 0.03 0.30 

 No. of 
Observations 5,117 7,674 17,157 2,719 909 33,576 

   Moneyness-Maturity Statistics   

                 Time to maturity (T ≤ 30) 

BS 
Average  –0.56 –0.24 –0.03 –0.02 –0.02 –0.15 

Std. Dev. 0.61 0.57 0.22 0.03 0.02 0.43 

HW87 
Average  –0.49 –0.23 –0.03 –0.03 –0.04 –0.13 

Std. Dev. 0.57 0.49 0.28 0.06 0.04 0.39 

HW88 
Average  –0.47 –0.21 0.02 0.02 –0.03 –0.11 

Std. Dev. 0.54 0.46 0.26 0.04 0.07 0.34 

 
No. of 

Observations 2,511 3,287 8,169 1,498 607 16,072 

  Time to maturity  (30 < T ≤ 60)  

BS 
Average  –0.06 0.06 0.00 -0.01 -0.01 0.00 

Std. Dev. 0.46 0.29 0.09 0.04 0.03 0.24 

HW87 
Average  –0.05 0.05 0.02 0.03 0.04 0.05 

Std. Dev. 0.48 0.24 0.05 0.05 0.05 0.27 

HW88 
Average  –0.03 0.04 0.01 0.02 0.03 0.04 

Std. Dev. 0.46 0.24 0.05 0.06 0.05 0.24 

 
No. of 

Observations 1,737 2,706 6,049 1,011 259 11,762 

(continued on next page) 
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Table 6 (continued) 
 

Models   DOTM OTM ATM ITM DITM Total 

  Time to maturity  (60 ˂ T ≤ 90)  

BS 
Average  0.12 0.08 0.01 0.00 –0.02 0.05 

Std. Dev. 0.42 0.23 0.09 0.04 0.04 0.22 

HW87 
Average  0.10 0.09 0.03 0.04 –0.04 0.04 

Std. Dev. 0.41 0.22 0.10 0.04 0.05 0.21 

HW88 
Average  0.07 0.05 0.02 –0.02 –0.04 0.02 

Std. Dev. 0.48 0.26 0.08 0.05 0.06 0.24 

  
No. of 

Observations 869 1,681 2,939 210 43 5,742 

 
Based on the data presented in Table 6, it can be concluded that the model of 
Black-Scholes-Merton and Hull-White (1987) overprice DOTM, OTM, ATM, 
ITM options and underprice DITM Nifty index call options, both in terms of 
moneyness. Table 6 clearly shows that the BS model severely mispriced DOTM 
& OTM, while Hull and White (1987, 1988) were relatively better at pricing 
these options. In all three models, we noticed a systematic decrease in the price 
error going from DOTM to DITM. The sequence is in the following pattern:  
 

⎪
⎩

⎪
⎨

⎧

+≤+

++

<≤

 (-23%) DOTM < (-4%) OTM < 3%)( ATM 3%)( ITM < (-3%) DITM  :HW88
 (-25%) DOTM < (-5%) OTM < 4%)( ITM < 3%)( ATM < (-1%) DITM  :HW87

 (-28%) DOTM < (-7%) OTM < (-2%) DITM (-1%) ATM (1%) ITM :BSM
Moneyness

 

Analysing the three models together, we concluded that the price variation across 
moneyness was lowest in the case of the Hull-White (1988) model compared to 
the other two models. When Tables 4, 5 and 6 were examined jointly, we 
concluded that, of the three models that have been discussed, the capability of the 
correlated version of HW model to explaining/capturing the volatility smile is 
higher than the uncorrelated HW and classical BS. We also identified that, among 
all of the models, the price error of HW88 is the lowest. It prices DOTM & OTM 
call options better than the other two with the pricing error being close to –23%. 
However, Hull-White (1987) differs marginally with a pricing error close to         
–25%. Table 6 reveals that the pricing error of Hull-White (1988) is lowest, while 
the pricing error of BS is the highest in analysing Nifty index options. 
 

Categorically, we find that BS and HW (1987) underpriced short-term 
options of all moneyness, while the stochastic variant of HW, i.e. HW (1988), 
overpriced ATM and ITM options. Table 6 shows that all models tend to 
overprice long-term DOTM, OTM and ATM options and underprice DITM 
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options. Table 5 also presents evidence that, of the three models, the price error 
of HW (1988) is lowest across moneyness and thus it is the best to price Nifty 
call index options. Pricing performance of BS is also comparable, to a great 
extent, at least for ATM, ITM and DITM options. However, its performance in 
DOTM and OTM categories is extremely poor as it severely underpriced short-
term DOTM & OTM options. The short-term pricing behaviour sequence of the 
three models can be arranged in the following pattern:  

 

€ 

ShortTerm
BSM :  DITM (-2%) ≤  ITM (-2%) <  ATM (-3%) <  OTM (-24%) <  DOTM (-56%) 
HW87 :   ITM (-3%) ≤  ATM (-3%) <  DITM (-4%) <  OTM (-23%) <  DOTM (-49%) 
HW88 :   ITM (+2%) ≤  ATM (+2%) <  DITM (-3%) <  OTM (-21%) <  DOTM (-47%)  

# 

$ 
% 

& 
% 

 
 
Similarly, medium and long-term pricing sequence can be arranged like:  
 

⎪
⎩

⎪
⎨

⎧

++++

+−+++

+≤

  (-3%) DOTM < 4%)( OTM < 3%)( DITM < 3%)( ITM < 1%)( ATM  :HW88
 5%)( OTM < 5%)( DOTM < 4%)( DITM < 3%)( ITM < 2%)( ATM  :HW87

 (-6%) DOTM < 6%)( OTM < (-1%) ITM (-1%) DITM < (0%) ATM :BSM
. TermMed

 

⎪
⎩

⎪
⎨

⎧

+++

++++

+++

   7%)( DOTM < 5%)( OTM < (-4%) DITM < 2%)( ATM < (-2%) ITM  :HW88
 10%)( DOTM < 9%)( OTM < 4%)( ITM < (-4%) DITM < 3%)( ATM  :HW87

 12%)( DOTM < 8%)( OTM < (-2%) DITM < 1%)( ATM < (0%) ITM :BSM
LongTerm

 
 
A clear pattern results in short-term maturity options, but in medium and long-
term categories the HW models cause overpricing of OTM and ATM options but 
underpricing of DITM Nifty index call options. Hence, we observe a systematic 
reduction (though not definite) in the price error of models in the following 
sequence: short term > medium term > long term. This finding implies that, with 
the increase in maturity, the performance of the models deteriorates. The data in 
Table 7, which exhibits the absolute percentage bias of models, do not reveal any 
new information but re-validate and support the results of Table 6. Furthermore, 
the pattern of the sequential effect indicates that the time to maturity is a crucial 
factor in the pricing performance of the discussed models, and the sequential 
representation of the models remains unchanged in all maturity classes (the price 
error decreases from DOTM to DITM options). Overall, Tables 6 and 7 jointly 
show that the pricing performance of HW (1988) is superior in options that are 
usually heavily traded viz. DOTM, OTM & ATM (Table 3). In addition to tables 
6 and 7, figures 5 and 6 also provide additional information to support the result 
that the pricing bias of the correlated HW model is lower than the uncorrelated 
HW and benchmark BS model in DOTM, OTM & ATM groups. Figures 5 and 6 
show the absolute and relative pricing bias of Black-Scholes and Hull-White’s 
(1987, 1988) models relative to the market.  
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Figure 5. Price bias of Black-Scholes and Hull-White’s (1987, 1988) models 

 

 

Figure 6. Hedging performance of Black-Scholes and Hull-White (1987, 1988)  
(refer Table 4) 
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Table 7 
Mean absolute percentage price bias statistics of Black-Scholes & Hull-White’s model 
 

Models   DOTM OTM ATM ITM DITM Total 

  Moneyness Statistics 

BS 
Average  0.52 0.32 0.10 0.03 0.02 0.20 

Std. Dev. 0.42 0.33 0.14 0.03 0.02 0.30 

HW87 
Average  0.54 0.32 0.10 0.04 0.02 0.21 

Std. Dev. 0.45 0.35 0.13 0.02 0.03 0.35 

HW88 
Average  0.51 0.33 0.09 0.03 0.03 0.20 

Std. Dev. 0.44 0.36 0.12 0.05 0.02 0.34 

 No. of 
Observations 5117 7674 17,157 2719 909 33,576 

   Moneyness-Maturity Statistics   

                    Time to maturity (T ≤ 30) 

BS 
Average  0.70 0.48 0.13 0.03 0.02 0.28 

Std. Dev. 0.45 0.39 0.18 0.03 0.02 0.37 

HW87 
Average  0.69 0.42 0.12 0.04 0.03 0.26 

Std. Dev. 0.46 0.36 0.16 0.05 0.04 0.32 

HW88 
Average  0.68 0.43 0.11 0.04 0.02 0.28 

Std. Dev. 0.45 0.34 0.11 0.06 0.04 0.31 

 
No. of 

Observations 2511 3287 8169 1498 607 16,072 

  Time to maturity  (30 < T ≤ 60)  

BS 
Average  0.36 0.21 0.06 0.03 0.02 0.14 

Std. Dev. 0.29 0.20 0.07 0.03 0.02 0.19 

HW87 
Average  0.34 0.23 0.03 0.07 0.04 0.12 

Std. Dev. 0.21 0.24 0.03 0.06 0.04 0.19 

HW88 
Average  0.37 0.21 0.03 0.05 0.04 0.11 

Std. Dev. 0.19 0.22 0.03 0.05 0.02 0.18 

 
No. of 

Observations 1737 2706 6049 1011 259 11,762 

 (continued on next page) 
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Table 7 (continued) 
 

Models   DOTM OTM ATM ITM DITM Total 

  Time to maturity  (60 ˂ T ≤ 90)  

BS 
Average  0.29 0.16 0.06 0.03 0.03 0.12 

Std. Dev. 0.32 0.18 0.06 0.03 0.03 0.19 

HW87 
Average  0.26 0.15 0.05 0.05 0.04 0.11 

Std. Dev. 0.36 0.14 0.07 0.03 0.04 0.17 

HW88 
Average  0.24 0.11 0.05 0.03 0.04 0.09 

Std. Dev. 0.37 0.13 0.08 0.04 0.04 0.17 

  
No. of 

Observations 869 1681 2939 210 43 5742 

 
The combined analysis of Tables 5 and 6 demonstrates that the incorporation of 
stochastic volatility leads to a higher pricing effectiveness, but not across all 
groups of maturity and moneyness. As estimation of stable parameters in a 
stochastic framework is difficult, traders and practitioners may not prefer to 
switch to this complex mode of option pricing. Thus, we conclude that the 
performance of models varies based on how the models incorporate the financial 
characteristics of various observable and non-observable parameters. 
Furthermore, to ensure overall applicability of Black-Scholes and Hull-White 
models and to provide the most apt model to traders for pricing options, cross-
sectional empirical analysis of the same data needs to be performed with other 
models of the family in the desired period.   
 
Hedging Effectiveness 
 
Table 8 reveals that the delta hedge performance of the Black-Scholes model is 
volatile compared to the Hull-White (1987, 1988) model. This finding indicates 
that the Hull-White models follow a return distribution. Overall, the performance 
of the Hull and White (1988) model is better than that of the other two models, 
perhaps because of the symmetric distribution of the Nifty index returns, 
especially during the period of the hedge. Delta, the hedging parameter of the 
models, is computed using the following parameters: index/underlying price 
4214, risk free rate of interest 9.6%, initial volatility (volatility of index return) 
35.44%, long run volatility 20%, half-life to volatility shocks 3 years, volatility of 
volatility 42.23%, correlation of asset return and volatility –0.64, time to maturity 
28 days, and exercise price ranging 4600 to 6100 (in multiples of 100). Figure 6 
graphically displays the hedging performance of the models in question.   
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Table 8 
 Hedging effectiveness: Price and delta statistics/simulation of Nifty index option 
 

Moneyness 
(%) 

Market 
Price 

Models Price  Delta of Models 

BS HW87 HW88 BS  HW87 HW88 

10.89 454.6 449.61 450.43 450.09 0.8797 0.8592 0.8630 
8.05 365.45 360.69 361.43 361.60 0.8183 0.7937 0.8063 

5.35 294.05 279.26 279.79 280.74 0.7424 0.7143 0.7355 

4.05 311 242.12 242.54 243.92 0.7000 0.6704 0.6952 
2.78 224.35 207.74 208.04 209.84 0.6552 0.6245 0.6520 

0.33 165.5 147.94 148.10 150.56 0.5611 0.5294 0.5589 
–0.85 142.45 122.70 122.85 125.50 0.5133 0.4816 0.5102 

–2.00 117.65 100.57 100.74 103.48 0.4658 0.4345 0.4610 

–3.13 96.8 81.43 81.67 84.38 0.4193 0.3889 0.4120 
–4.23 77.65 65.14 65.46 68.05 0.3744 0.3452 0.3641 

–5.30 60.2 51.46 51.90 54.27 0.3317 0.3040 0.3178 

–6.36 49.7 40.15 40.71 42.80 0.2915 0.2655 0.2740 
–7.38 41.35 30.94 31.62 33.39 0.2541 0.2300 0.2330 

–8.39 29.25 23.55 24.32 25.76 0.2198 0.1977 0.1955 
–9.38 19.2 17.70 18.55 19.66 0.1886 0.1686 0.1616 

–10.34 15.5 13.14 14.04 14.84 0.1606 0.1427 0.1315 

–11.28 14.95 9.64 10.56 11.09 0.1357 0.1198 0.1054 
–12.21 9.2 6.99 7.90 8.20 0.1138 0.0999 0.0829 

–13.11 9.2 5.01 5.88 6.00 0.0947 0.0826 0.0641 

–14.00 5.7 3.54 4.36 4.35 0.0783 0.0679 0.0486 

–14.87 5 2.48 3.22 3.12 0.0642 0.0554 0.0360 

 
 
Correlation Sensitivity of Hull and White (1988) 
 
Figure 7 shows the correlation sensitivity of Hull-White (1988) with respect to 
the market price and indicates that the degree of correlation has a significant 
impact on the option prices. The price bias of a model and the market is the 
lowest in the case of a negative correlation, followed by zero correlation, and 
then positive correlation. This finding supports the fact that Nifty return and 
implied volatility follow a negative correlation (Figure 2) and indicates that 
negative correlation invariably drives down the OTM call option prices, whereas 
positive correlation drives them up.  
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Figure 7. Correlation sensitivity of Hull-White (1988) 

 
Although the Hull-White (1988) model suffers from some serious limitations 
such as a non-robust approximation and limits on the values of parameters which 
it accepts (because of Taylor series), the model is used extensively for pricing 
various option instruments. Such instruments include interest rate options, path 
dependent options, future options and exotic options, due to its adaptability and 
flexibility in estimation of parameters and its capacity to deduce the model 
parameters from discrete market data.   
 
 
CONCLUSION  
 
The Hull-White stochastic volatility models have been derived from empirical 
research analysis, which demonstrates that the assets return distribution is non-
lognormal (Mandelbrot, 1963; Fama, 1965). The model wields its effect in strong 
moneyness and maturity pricing biases of Black-Scholes (Smith, 1976; 
Rubinstein, 1985; Wiggins, 1987; Derman & Kani, 1994). Having considered the 
concept and its applicability, we focus on determining the best alternative model 
based on specific distributional assumptions. We acknowledge that the core 
platform of almost all the stochastic models was substantially indicating toward 
the flexible distributional structure, which not only correlated underlying stock 
returns and its volatility, but also controlled the level of skewness and kurtosis. 
We deduced that the stochastic models improve pricing error significantly when 
compared to the classical BS model. Among the various options available, this 
paper finds the most suitable model and ensures that it works with actual data and 
outperforms other competitive models. We determined that the Hull-White model 
met these criteria. We reject the claim that HW’s model outperforms the BS 
because the former is unable to remove the pricing bias completely. Unknown 
factors such as random jump, market forces and other various uncontrollable 
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dynamics may still cause options price volatility. As the Hull-White model is 
adopted as the most successful model, it can be assured that this model will 
perform even better when utilised in normal, average and stable conditions with 
better clutched controllability. The HW model satisfies the desire to keep 
investments protected under normal conditions. Following this analysis, we 
identify a dominant model that remained successful through one of the most 
difficult phases of the Indian economy. 
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