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Abstract: Drought poses a significant threat to semi-arid regions such as Iran's Meighan Wetland, where limited ground-based data hinders 
effective monitoring and water resource management. This study addresses the challenge of assessing meteorological drought in data-scarce 
environments by integrating satellite-derived and reanalysis datasets with ground observations. The objective is to evaluate the spatiotemporal 
dynamics of drought in the Meighan Wetland from 1998 to 2025 using the Standardized Precipitation Index (SPI) and the Standardized 
Precipitation Evapotranspiration Index (SPEI) at 3-, 6-, and 12-month timescales. Monthly precipitation data from the GPM Final Run Version 7 
and temperature data from the ERA5-Land product were validated against 10 synoptic stations, with six selected for detailed analysis due to 
their high accuracy (R > 0.9 for GPM, R² > 0.98 for ERA5-Land). Results identified major drought episodes in 2000, 2008, 2017, and 2021, with 
SPEI indicating greater severity due to rising evapotranspiration. Correlation between SPI and SPEI was strong (R > 0.87), particularly at longer 
timescales. Trend analysis using the Mann–Kendall test and Sen’s slope estimator revealed significant drying trends in Arak during late winter 
and summer. This study demonstrates the efficacy of combining satellite and reanalysis data for robust drought monitoring, offering critical 
insights for adaptive water resource planning in semi-arid regions. 
 
Keywords: GPM; ERA5-Land; Drought Indices; Time-series Analysis; Mann-Kendall Test 
 
1.0 Introduction  

Drought is a complex and pervasive natural hazard arising from prolonged periods of below-average precipitation, often leading to 
severe socio-economic and environmental consequences (Mishra & Singh, 2010, 2011). As one of the most recurrent and costly climate 
extremes, drought affects water availability, food production, energy supply, and ecosystem services. It is commonly classified into four major 
types: meteorological drought, defined by a precipitation deficit; hydrological drought, marked by reduced surface or subsurface water resources; 
agricultural drought, indicated by soil moisture deficiency and its impacts on crops; and socioeconomic drought, encompassing broader 
economic and social effects triggered by water shortages (Mishra & Singh, 2010; Wang et al., 2022). 

In recent decades, numerous studies have emphasized that drought frequency, intensity, and spatial extent have increased under 
the influence of global climate change (Morid et al., 2006; Samantaray et al., 2022; Tan et al., 2022; Touma et al., 2015). This shift is particularly 
alarming in arid and semi-arid regions, where water scarcity is already critical and ecosystems are highly sensitive to hydroclimatic variability 
(Tan et al., 2017; Winkler et al., 2017). Effective drought monitoring requires continuous, high-quality climate data, yet in many developing 
regions, ground-based meteorological stations are sparse, unevenly distributed, and often suffer from discontinuities (García-Valdecasas Ojeda 
et al., 2021; Tan et al., 2017). 

To address these limitations, satellite-based datasets and climate reanalysis products have become increasingly important in 
hydrometeorological research. Satellite-derived precipitation products such as the Tropical Rainfall Measuring Mission (TRMM) and the Global 
Precipitation Measurement (GPM) provide near-global coverage with high temporal and spatial resolution and have been widely applied in 
drought monitoring where dense observational networks are lacking (Chen et al., 2020; Tan et al., 2017). These datasets have proven useful 
across diverse regions, from East Africa (Naumann et al., 2012) to the Indian subcontinent (Kesarwani et al., 2023). However, validation studies 
have highlighted systematic biases in satellite precipitation estimates, particularly in mountainous or low-rainfall environments, underscoring 
the need for bias correction and validation against synoptic observations before operational application (Ashraf et al., 2022; De Jesús et al., 
2016; Santos et al., 2017; Winkler et al., 2017). 

In addition to precipitation, drought assessments increasingly require temperature information to quantify evaporative demand, which 
strongly influences drought severity (Pandey et al., 2021). ERA5-Land, a high-resolution global reanalysis dataset developed by the European 
Centre for Medium-Range Weather Forecasts (ECMWF), has emerged as a reliable source of hourly temperature and evapotranspiration data 
at 0.1° spatial resolution (Du et al., 2025; Torres-Vázquez et al., 2023; Ullah et al., 2021). ERA5-Land has been used to estimate potential 
evapotranspiration (PET) and to calculate temperature-sensitive drought indices such as the Standardized Precipitation Evapotranspiration 
Index (SPEI). Despite its consistency and coverage, ERA5-Land products should be validated locally to ensure regional accuracy. 

For drought quantification, two widely used indices are the Standardized Precipitation Index (SPI) and the SPEI (Guttman, 1999; 
McKee et al., 1993). SPI, developed by McKee et al. (1993), measures drought solely based on precipitation anomalies and is effective across 
multiple timescales. SPEI, introduced by Vicente-Serrano et al. (2010), incorporates PET to capture both water supply and demand, making it 
particularly relevant in the context of global warming. These indices have been successfully applied worldwide to evaluate drought severity and 
duration, including in Iran (Lotfirad et al., 2022), Algeria (Haied et al., 2017), Europe (Spinoni et al., 2015), and China (Jain et al., 2015). 

To analyze drought evolution over time, non-parametric statistical methods such as the Mann–Kendall (MK) test and Sen’s slope 
estimator are widely used. The MK test identifies monotonic trends in time series data without requiring assumptions about normality or linearity, 
while Sen’s slope quantifies the rate of change. These methods have been applied extensively to detect changes in precipitation, temperature, 
and drought indices across diverse climates (Chen et al., 2020; Irannezhad et al., 2016; Liu et al., 2021). 

In this study, I aim to evaluate the spatiotemporal dynamics of meteorological drought in and around the Meighan Wetland of Iran, a 
sensitive hydrological system located in a semi-arid region where water stress has ecological and socio-economic implications. The research 
integrates ground-based synoptic observations with GPM precipitation and ERA5-Land temperature data, applying SPI and SPEI at multiple 
timescales. Dataset validation, characterization of drought frequency and severity, and trend detection form the core of this analysis. 

The specific objectives of this study are to: 
 Validate GPM and ERA5-Land datasets against synoptic station data. 
 Assess the spatiotemporal variability of drought using SPI and SPEI at 3-, 6-, and 12-month scales. 
 Classify and quantify drought characteristics (frequency, intensity, duration). 
 Analyze long-term drought trends using Mann–Kendall and Sen’s slope methods. 
 Provide insights for improving drought monitoring and regional water resource planning. 
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2.0 Study Area 
The Meighan Wetland is located in central Iran, within Markazi Province, and spans between 33°49′29″ to 34°44′52″ N latitude and 

49°22′13″ to 50°17′55″ E longitude. It lies in a closed basin situated between the Zagros Mountains to the west and the Central Iranian Mountains 

to the east, covering an area of about 545,229 hectares. The watershed consists of eight main sub-basins—Karahrud, Mehrabad, Saruq, 
Shahrab, Ashtian, Ebrahimabad, Kheirabad, and Amanabad—and lacks any perennial rivers. Approximately 65% of the area (about 353,800 
hectares) is composed of plains, while the remainder consists of hills and mountainous terrain. 

At the center of the watershed lies Meighan Salt Lake, a seasonal saline wetland of high ecological significance that is particularly 
vulnerable to both climatic variability and human pressures. The lake and its surroundings feature diverse geomorphological landscapes, 
including halophyte-covered lands, dunes, alluvial fans, and flat plains. These characteristics, coupled with the region’s closed hydrological 
system, make Meighan an important site for studying drought in semi-arid environments. 

Climatically, the region receives an average annual precipitation of around 287 mm (Regional Water Company of Markazi, RWCM). 
Long-term records from the Arak meteorological station indicate an average annual temperature of about 14 °C, with historical extremes ranging 
from −30.5 °C to +44 °C. Evaporation is high, reaching up to 2,036 mm per year, contributing to persistent water stress. The area also 
experiences a prolonged dry season lasting about 150 days, from early June to early November, during which relative humidity drops as low as 
28%. In contrast, winter months are more humid, with average relative humidity around 63%. Overall, the annual average relative humidity is 
about 46%, and total annual sunshine reaches nearly 2,993 hours (Department of Environment, DOE). 

For this study, data from 10 synoptic meteorological stations were utilized: Arak, Tafresh, Khomeyn, Komijan, Mahallat, Shazand, 
Salafchegan, Delijan, Avaj, and Dorud. Their geographic distribution spans a range of elevations and climatic conditions across the watershed, 
and these stations were critical in validating satellite-derived datasets. Figure 1 presents an overview of the study area, including the location 
of the Meighan Wetland, the Digital Elevation Model (DEM), and the positions of the meteorological stations. 

 

 
Figure 1: Location of the Meighan Wetland in central Iran. 

3.0 Materials and Methodology 
3.1 Precipitation Data 

This study uses monthly precipitation data from the Global Precipitation Measurement (GPM) mission, specifically the Integrated 
Multi-satellite Retrievals for GPM (IMERG) Final Run Version 7 product. The GPM mission, jointly developed by NASA and JAXA, provides 
high-resolution, satellite-based precipitation estimates with near-global coverage (60°N–60°S). The IMERG Final Run integrates data from 
multiple sensors and applies gauge-based bias correction, making it well-suited for retrospective drought analysis. The dataset has a spatial 
resolution of 0.1° (~10 km) and a temporal resolution of 30 minutes, but for this study it was aggregated to monthly values for the period 1998–
2025. 

In addition to satellite data, daily ground-based precipitation records from 10 synoptic stations were obtained from the Iranian 
Meteorological Organization. These stations—Arak, Tafresh, Khomeyn, Komijan, Mahallat, Shazand, Salafchegan, Delijan, Avaj, and Dorud—
are distributed across Markazi Province and were selected for their record length and continuity. Their locations span diverse topographic and 
climatic zones within the basin, enabling representative validation of the satellite dataset. Daily precipitation observations were aggregated to 
monthly totals to align with the GPM data. Table 1 summarizes each station’s characteristics, including geographic coordinates, elevation, and 
data availability period. 
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Table 1: Synoptic meteorological stations used for precipitation validation in the Meighan Wetland 

No Name Longitude Latitude Elevation From To 
1 Arak 49.783333 34.071944 1702.8 2000 June 2022 
2 Tafresh 50.033333 34.684444 1979.7 2001 June 2022 
3 Khomeyn 50.069167 33.623889 1834.6 2001 June 2022 
4 Komijan 49.314444 34.709722 1741 2005 June 2022 
5 Mahallat 50.483333 33.888889 1622 2006 June 2022 
6 Shazand 49.408333 33.941667 1913 2010 June 2022 
7 Salafchegan 50.469444 34.483611 1381.4 2003 June 2022 
8 Delijan 50.686111 33.977222 1524.3 2003 June 2022 
9 Avaj 49.2167 35.5667 2034.9 2000 June 2022 
10 Dorud 49.004444 33.523611 1522.3 2000 June 2022 

 
3.2 Temperature Data 

The temperature data used in this study were obtained from the ERA5-Land reanalysis dataset, developed by the European Centre 
for Medium-Range Weather Forecasts (ECMWF). ERA5-Land provides hourly data at a spatial resolution of 0.1° (~9 km), offering greater detail 
over land areas compared to the standard ERA5 product. Its fine spatial and temporal resolution, combined with consistent long-term coverage, 
makes it a valuable resource for climate analysis, particularly in data-scarce or topographically complex regions such as central Iran 

For this research, monthly averages of minimum, maximum, and mean temperature were extracted from ERA5-Land for the period 
1998–2025. Complementary ground-based temperature data were obtained from 10 synoptic meteorological stations, which provided daily 
records of minimum, maximum, and mean temperature. These daily observations were aggregated to monthly averages to match the temporal 
resolution of the ERA5-Land dataset. 

Over the study period, the seasonal temperature cycle in the region is clear and consistent. Summers are typically hot and dry, with 
July and August recording the highest average temperatures, while January represents the coldest period (Figure 2). These seasonal patterns, 
observed in both the reanalysis and ground-based datasets, highlight the semi-arid climate of central Iran and underscore the importance of 
temperature–precipitation interactions in shaping drought dynamics within the basin.  

 

 

 
 

Figure 2: Monthly Minimum and maximum temperature trends based on synoptic observations. 
 

3.3 Validation Process and Statistical Analysis 
To ensure the reliability of GPM precipitation and ERA5-Land temperature data for drought monitoring in the Meighan Wetland, both 

datasets were validated against observations from 10 synoptic stations (Arak, Tafresh, Khomeyn, Komijan, Mahallat, Shazand, Salafchegan, 
Delijan, Avaj, and Dorud) for the period 2000–2022, depending on data availability. A point-to-pixel validation approach was applied, in which 
each station’s precipitation time series was directly compared with the corresponding GPM grid cell, thereby minimizing interpolation errors and 
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ensuring location-specific accuracy. Dataset performance was evaluated using the Pearson correlation coefficient (R), root mean square error 
(RMSE), and relative bias, with the statistical framework summarized in Table 2. 

 
Table 2: Statistical Metrics (T = TRMM, O = Synoptic Observed Data) 

 
 

GPM precipitation correlated strongly with stations such as Arak, Khomeyn, and Shazand (R > 0.9); however, systematic biases were 
observed, with overestimation at arid lowland stations (Salafchegan, Delijan; Bias > +45%) and underestimation at high-elevation sites (Avaj, 
Dorud; negative Bias). ERA5-Land temperature showed excellent agreement across all stations (R ≥ 0.98, with low RMSE and Bias), confirming 
its suitability for drought analysis. Station-by-station performance is provided in Table 3, and the spatial distribution of GPM reliability across the 
study area is illustrated in Figure 3. Based on these results, the six stations with the highest accuracy and closest proximity to the Meighan 
Wetland (Arak, Tafresh, Khomeyn, Komijan, Mahallat, and Shazand) were selected to calculate mean precipitation across the wetland (2011–
2021) and to perform seasonal assessments, while Salafchegan, Delijan, Avaj, and Dorud were excluded due to significant biases or spatial 
mismatches. 

 
Table 3: Statistical Analysis 

Synoptic 
Stations 

Date Years GPM Data ERA5-Land Data 
Start End RMSE 

(mm/month) 
Bias 
% 

R RMSE 
(mm/month) 

Bias 
% 

R 

Arak 2000 2022 20 15 33.6 0.94 1.2 -5.6 0.99 
Tafresh 2001 2022 19 10.9 5.8 0.91 3.6 -24.1 0.99 

Khomeyn 2001 2022 19 14.6 33.7 0.94 2.6 -14.6 0.99 
Komijan 2005 2022 15 14.8 36.7 0.93 2.1 -12.3 0.99 
Mahallat 2006 2022 14 12.3 42.4 0.92 2.8 -14.6 0.99 
Shazand 2010 2022 10 14.9 0.9 0.93 2.6 -13.8 0.98 

Salafchegan 2003 2022 17 11.3 46.2 0.92 1.7 -7.8 0.99 
Delijan 2003 2022 17 11.5 47.2 0.92 1.4 -4.7 0.99 
Avaj 2000 2022 20 14.5 -6.8 0.89 2.8 -20.4 0.98 

Dorud 2000 2022 20 25 -1.9 0.91 3.9 -21.6 0.99 
 

 
 

Figure 3: Spatial distribution of Statistical Metrics in 10 Point-to-Pixel Locations (Comparing GPM Final-Run data with 10 Synoptic Stations’ 
Precipitation Data) 

 
To estimate precipitation across the wetland, the Thiessen polygon method was first applied to calculate monthly areal mean 

precipitation, weighting each station according to its area of influence (Figure 4). This approach ensured an accurate representation of station 
contributions within a sparse network. The resulting Thiessen polygons are shown in Figure 5. For spatial visualization, Inverse Distance 
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Weighting (IDW) was then employed to generate continuous precipitation surfaces, capturing gradual variability across the wetland (Figure 6). 
Together, Thiessen polygons provided quantitative accuracy for areal averages, while IDW offered interpretable spatial patterns, enhancing 
both the reliability and presentation of precipitation estimates. 

 
 

Figure 4: Monthly Mean Precipitation of the Meighan Wetland from 2011 to 2021. 
 

 
Figure 5: Thiessen Polygon Method Conducted for Meighan Wetland Area 

 
Seasonal validation of GPM data (2011–2021) using the six selected stations revealed the highest agreement in autumn (R = 0.94, 

low RMSE) and spring (R = 0.87), with weaker performance in summer (R = 0.71) due to sparse convective rainfall. Winter showed moderate 
agreement (R = 0.85) but higher bias (+35.6%), particularly in areas influenced by frontal rainfall. These seasonal results are presented in 
Figures 6 and 7. The findings are consistent with similar studies in other semi-arid and monsoon-influenced basins, such as the Kelantan River 
Basin in Malaysia (Tan et al., 2017), where satellite precipitation retrievals also exhibited limitations in capturing convective rainfall. 
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Figure 6: Precipitation Distribution across the Meighan Wetland 

 

 
 

Figure 7: Scatter plots of (a) monthly, (b) December to February, (c) March to May, (d) June to August, and (e) September to November 
seasonal precipitation derived from the GPM and Synoptic Observation in 2011-2021 
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3.4 Standardized Precipitation Index (SPI) 
The SPI is a widely used meteorological index for assessing drought conditions based on precipitation data. Developed by McKee et 

al. (1993), SPI is calculated by fitting observed precipitation to a probability distribution, such as the Gamma or Pearson Type III distribution. 
The index quantifies the deviation of precipitation from the long-term average over a specific period. Being “standardized” allows for comparison 
of drought conditions across different climates (e.g., deserts versus rainforests). SPI can be computed at multiple timescales (e.g., 1-, 3-, 6-, 
and 12-month) to capture short-term or long-term drought conditions. SPI values range from −3 to +3, where positive values indicate wetter-
than-average conditions and negative values indicate drier-than-average conditions (Table 4). 

 
Table 4: Standardized Precipitation Index (SPI) Classification: 

Class SPI Value 
Extremely Wet SPI ≥ 2 
Severely Wet 1.5 ≤ SPI < 2 

Moderately Wet 1 ≤ SPI < 1.5 
Near-Normal -1 < SPI < 1 

Moderately Dry -1.5 < SPI ≤ -1 
Severely Dry -2 < SPI ≤ -1.5 

Extremely Dry SPI ≤ -2 
 

In this study, SPI was calculated at 3-, 6-, and 12-month timescales to capture different aspects of drought. The 3-month SPI (SPI-3) 
represents short-term, seasonal precipitation deficits relevant to agriculture and ecosystems; the 6-month SPI (SPI-6) reflects medium-term 
hydrological stress; and the 12-month SPI (SPI-12) captures long-term changes in water balance that affect groundwater recharge and wetland 
dynamics. While results were generated for all three timescales, drought characteristics such as duration, severity, frequency, and intensity, 
and trend analyses primarily focused on SPI-3, as short-term droughts are most critical for the Meighan Wetland’s agricultural and ecological 
systems. 
 
3.5 Standardized Precipitation Evapotranspiration Index (SPEI) 

The Standardized Precipitation Evapotranspiration Index (SPEI), introduced by Vicente-Serrano et al. (2010), is a widely used drought 
index that incorporates the effects of both precipitation and temperature. Unlike SPI, which relies solely on precipitation, SPEI accounts for 
potential evapotranspiration (PET), making it particularly suitable for assessing drought under changing climatic conditions. The index is 
calculated by fitting the monthly climatic water balance (precipitation minus PET) to a log-logistic distribution, which is then standardized to 
produce values comparable to a normal distribution. 

In this study, SPEI was calculated at 3-, 6-, and 12-month timescales using precipitation from the GPM IMERG Final Run V7 and 
PET derived from ERA5-Land temperature inputs via the Thornthwaite method. SPEI-3 reflects short-term seasonal drought variability, SPEI-6 
captures medium-term water stress, and SPEI-12 highlights long-term drought evolution. Similar to SPI, SPEI-3 was emphasized in drought 
characteristics and trend analyses, as short-term droughts have the most immediate impacts on agriculture, water resources, and wetland 
ecosystems in the region.   
 
3.6 Potential Evapotranspiration (PET) 

Potential evapotranspiration (PET) represents the atmospheric demand for moisture and is a key variable in drought analysis, 
particularly in semi-arid and arid regions. It reflects the amount of water that would be evaporated and transpired by vegetation if sufficient 
water were available. In this study, PET was incorporated into the SPEI calculation to account for temperature-driven drought stress. 

Monthly PET values were estimated using the Thornthwaite method, which calculates evapotranspiration based on average monthly 
temperature and latitude. While less detailed than energy-based models such as Penman–Monteith, the Thornthwaite method is widely used 
due to its simplicity and minimal data requirements, especially when only temperature data are available. Temperature inputs for PET were 
derived from the ERA5-Land reanalysis dataset for the period 1998–2025, providing spatially continuous and climatologically robust estimates 
of evapotranspiration across the Meighan Wetland watershed.  
 
3.7 Drought Characteristics 

To better understand the nature and impacts of drought events in the Meighan Wetland region, several drought characteristics (DC) were 
extracted from the SPI-3 time series. These characteristics describe not only the frequency of droughts but also their intensity and duration, 
providing a more comprehensive view of drought dynamics beyond single-month anomalies. The main parameters analyzed include: 

 Drought Duration: the number of consecutive months during which SPI values remain below zero. 
 Drought Intensity: the cumulative severity of a drought event, typically measured as the sum of SPI values over the drought 

period. 
 Drought Magnitude: the absolute value of the sum of negative SPI values during a drought event. 
 Drought Frequency: the total number of drought events observed over the study period. 

 
3.8 Trend Analysis Using Mann-Kendall and Sen’s Slope Estimator 

To evaluate long-term drought dynamics in the Meighan Wetland region, trend analyses were performed on the SPI-3 and SPEI-3 
time series using a combined non-parametric approach. The Mann–Kendall (MK) test, developed by Mann (1945) and later refined by Kendall 
(1975), was employed to detect the presence and direction of monotonic trends, while Sen’s slope estimator was applied to quantify their 
magnitude. The MK test is particularly suitable for hydrological and climatic data because it can detect trends without assuming normality or 
linearity. A positive Z-value from the MK test indicates an increasing trend (wetting), whereas a negative Z-value signifies a decreasing trend 
(drying). Trend significance was evaluated at the 90%, 95%, and 99% confidence levels using the standard normal distribution. The MK test 
was conducted using the MAKESENS program, which simplifies the computation of Z-values and supports graphical interpretation. This method 
has been widely applied in regional drought assessments (Khanmohammadi et al., 2022; Tuan & Canh, 2021). 

Sen’s slope estimator, a non-parametric method introduced by Sen (1968), calculates the median of all possible pairwise slopes 
between data points in a time series, providing a robust measure of the rate of change. A positive slope indicates a trend toward wetter conditions, 
while a negative slope represents increasing drought severity. The estimator is resistant to outliers and is widely used to identify gradual, 
consistent changes in climate variables. It has been extensively applied in drought trend studies across Asia and the Middle East, particularly 
in semi-arid climates. By integrating the MK test and Sen’s slope estimator, this study provides a comprehensive framework for analyzing 
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drought trends, capturing both the presence and direction of trends, as well as their magnitude and intensity in precipitation-driven (SPI-3) and 
temperature-sensitive (SPEI-3) drought conditions. 
 
4.0 Results and Discussion 
4.1 Spatio-temporal Changes in Precipitation 

The annual precipitation trends from 1998 to 2025 across the six selected stations, Arak, Tafresh, Khomeyn, Komijan, Mahallat, and 
Shazand show considerable interannual variability in rainfall patterns (Figure 8). Although no consistent upward or downward trend is visually 
dominant over the period, some notably dry years stand out, including 2000, 2008, and 2021, when total annual precipitation fell below 300 mm 
at most stations. In contrast, 2004 and 2015 recorded peak rainfall exceeding 450 mm at stations such as Arak and Shazand. Among the six 
stations, Shazand consistently recorded the highest annual rainfall, while Mahallat and Tafresh remained relatively dry. This spatial 
heterogeneity indicates that even within the relatively compact Meighan watershed, topographic influences and localized climatic effects play a 
significant role in precipitation distribution. 

The mean monthly precipitation patterns (Figure 8) exhibit a typical semi-arid seasonal distribution, with most rainfall occurring 
between November and April. Peak rainfall is observed in March and April, followed by a sharp decline during late spring. From June to 
September, all stations experience minimal rainfall, often below 5 mm/month, reflecting the region’s prolonged dry season. This dry period, 
coinciding with high temperatures and elevated evapotranspiration, highlights the Meighan Wetland’s vulnerability to seasonal drought stress. 
The monthly cycle is generally consistent across the six stations, though some variation in intensity exists; for example, Shazand typically 
receives more precipitation in March–April, whereas Mahallat generally lags slightly in peak totals. These observations provide essential 
seasonal context for understanding SPI and SPEI dynamics in the region. 

 

 

 
 

Figure 8: Annual and Mean Monthly Precipitation (1998-2025) 
 

4.2 Comparison of SPI-3 and SPEI-3 derived from Synoptic and Satellite Data 
To evaluate the consistency between satellite-based and ground-observed drought indices, SPI-3 and SPEI-3 values derived from 

GPM and ERA5-Land were compared with those calculated from synoptic station data at the six validated stations: Arak, Tafresh, Khomeyn, 
Komijan, Mahallat, and Shazand. 

Figure 9 presents the comparison between the SPI-3 time series computed from GPM and those based on synoptic observations. 
The results show generally high agreement across all stations. The strongest correlations were found at Arak (R = 0.88) and Khomeyn (R = 
0.87), followed closely by Mahallat (R = 0.84) and Tafresh (R = 0.83). Moderate agreement was observed at Shazand (R = 0.81) and Komijan 
(R = 0.78). These results confirm that SPI-3 calculated from GPM Final Run V7 closely follows observed drought patterns in both timing and 
intensity. 
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Figure 9: SPI-3 Derived from GPM and Synoptic Precipitation Inputs 
 

In Figure 10, the comparison of SPEI-3—derived from GPM precipitation and ERA5-Land temperature inputs with synoptic-based 
values also demonstrates encouraging consistency. The strongest agreement was observed at Tafresh (R = 0.85) and Khomeyn (R = 0.83). 
Other stations, such as Komijan (R = 0.80) and Mahallat (R = 0.76), showed acceptable correlations. Shazand, however, exhibited a weaker 
match (R = 0.72), possibly due to higher local variability in temperature and evapotranspiration affecting PET estimation. The Arak value could 
not be directly retrieved due to formatting issues but was visually interpreted from the figure to be above 0.80. 

Overall, the side-by-side comparison confirms that both SPI-3 and SPEI-3 derived from satellite-based sources reasonably replicate 
observed drought patterns. This supports the use of these datasets for drought monitoring in areas with sparse ground station coverage, 
particularly for operational early warning systems and long-term climate impact assessments. 
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Figure 10: SPEI-3 Derived from Satellite-based and Synoptic Precipitation Inputs 
 
4.3 Assessment of Meteorological Drought Using SPI and SPEI 

To assess meteorological drought at different temporal scales, SPI and SPEI were calculated at 3-, 6-, and 12-month intervals using 
GPM and ERA5-Land data. This approach provides insight into both short-term water stress and long-term drought development across the six 
validated stations: Arak, Tafresh, Khomeyn, Komijan, Mahallat, and Shazand. 

As shown in Figure 11, which presents SPI and SPEI results for Tafresh and Komijan, frequent short-term droughts are evident in 
the SPI-3 and SPEI-3 series, particularly during 2000, 2008, 2017, and 2021. In Komijan, both indices fell below −2 in 2008 and 2021, indicating 
episodes of extreme short-term drought. Tafresh experienced a sharp but brief event in 2018, with SPEI-3 reaching approximately −1.9. At the 
6-month timescale, drought intensity in both stations remained significant during 2000–2001 and 2017, reflecting seasonal-to-half-year water 
deficits. SPEI-6 values in Komijan during mid-2017 dropped to around −2.1, suggesting persistent atmospheric drought conditions likely driven 
by rising temperatures. 

Figure 12 displays the SPI and SPEI curves for Khomeyn and Shazand. Similar to the other stations, both showed strong short- and 
medium-term drought signals in 2000, 2008, 2017, and 2021. In Shazand, SPEI-3 fell below −2.0 in spring 2021, indicating a sharp seasonal 
drought likely linked to both rainfall shortage and high PET. Khomeyn experienced consistent declines in SPI-6 and SPEI-6 during 2000 and 
2017, with moderate-to-severe drought categories sustained for several months. These patterns confirm the spatial consistency of drought 
episodes across the watershed. 

The 12-month SPI and SPEI series, visible across both figures, provide a longer-term perspective on drought evolution. The 2000–
2001 drought is clearly evident across all four stations, with SPEI-12 in Komijan dropping below −2.2 by late 2001. In Tafresh, the 2017–2018 
event marked a significant but not extreme drought, with SPEI-12 reaching −1.71 in March 2018. Shazand and Khomeyn exhibited similar long-
term declines during 2008 and 2021, though the magnitude mostly remained within the moderate-to-severe range. These longer timescales 
emphasize the persistence and accumulation of drought conditions, which are critical for understanding hydrological impacts on groundwater 
and wetland systems. 

Taken together, SPI and SPEI assessments across multiple timescales confirm that 2000, 2008, 2017, and 2021 were the most 
impactful drought years in the region. SPEI consistently reported lower values than SPI in several instances, reflecting the added influence of 
rising temperatures and evapotranspiration on drought severity. 
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Figure 11: Temporal Changes in SPI and SPEI at Tafresh and Komijan Station 

 

 
Figure 12: Temporal Changes in SPI and SPEI at Khomeyn and Shazand Station 
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4.4 SPI and SPEI Comparison 
To examine the relationship between SPI and SPEI, correlation analysis was conducted at the 3-, 6-, and 12-month timescales for all 

six validated stations. SPI was derived from GPM precipitation, while SPEI was calculated using GPM precipitation and ERA5-Land temperature. 
This comparison highlights how closely the two indices align at different temporal resolutions in capturing drought variability. 

As illustrated in Figure 13, scatter plots for the Arak station show strong agreement between SPI and SPEI, with correlation values of 
0.87 (SPI3 vs. SPEI3), 0.94 (SPI6 vs. SPEI6), and 0.97 (SPI12 vs. SPEI12). The trend of increasing correlation with longer accumulation periods 
was consistent across all stations. Among the six stations, Komijan, Khomeyn, and Shazand exhibited the highest agreement at the 12-month 
timescale (R = 0.98), indicating nearly identical long-term drought behavior as captured by both indices. 

At the 3-month scale, correlation coefficients ranged from 0.87 to 0.90, reflecting slightly greater variability due to the short-term 
influence of temperature and evapotranspiration captured by SPEI but not by SPI. Komijan (R = 0.90) showed the strongest short-term match, 
while Mahallat and Arak had the lowest (R = 0.87), though still indicating a strong relationship. Correlations at the 6-month scale ranged from 
0.93 to 0.96, further confirming convergence of the indices as drought duration increases. 

Overall, the analysis demonstrates a very high degree of coherence between SPI and SPEI across the Meighan Wetland region, 
particularly at medium and long timescales. While SPI reflects precipitation anomalies, SPEI’s inclusion of evapotranspiration adds valuable 
climatic sensitivity, yet the two indices remain largely consistent in tracking drought evolution. Their combined use provides a robust foundation 
for drought assessment in semi-arid climates. 
 

 
 

Figure 13: Temporal Changes in SPI and SPEI at Arak Station 
 
4.5 Drought Characteristics 

To characterize drought behavior across the Meighan Wetland region, drought event statistics were extracted from SPI records and 
evaluated in terms of frequency, duration, severity, intensity, and peak SPI values. Figure 14 visualizes the frequency of drought and wet events 
for all six stations, while Table 5 provides detailed information on specific drought episodes at Arak, Tafresh, and Komijan, the stations most 
representative of the wetland. 

As shown in Figure 14, moderately dry conditions (−1.5 < SPI ≤ −1.0) are the most frequent drought category across all stations, 
with Arak and Komijan each recording 39 occurrences. Severely dry conditions (−2.0 < SPI ≤ −1.5) were particularly prevalent in Komijan (21 
events), suggesting that this station, located in a transitional elevation zone, is more vulnerable to intense rainfall deficits. Although extremely 
dry events (SPI ≤ −2.0) were less frequent, they occurred across all stations, especially Shazand (11 events) and Mahallat (10 events), 
indicating localized episodes of extreme hydrological stress. Wet events occurred at similar rates in some stations, but extremely wet conditions 
(SPI ≥ 2.0) remained rare. 
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Regarding drought structure, Table 5 highlights several prolonged and impactful events. Tafresh experienced the most intense 
drought, with a minimum SPI of −3.12 during a 6-month event in 2000, accompanied by a severity of −12.18 and an intensity of −2.03. Komijan 
recorded a drought from April to October 2000 (6 months) with a peak SPI of −2.58 and total severity of −9.88. Although not the longest, this 
drought had one of the highest intensity values (−1.65), indicating an acute hydrological deficit over a relatively short period. In Arak, the most 
intense drought also occurred in 2000, lasting 6 months (April to October), reaching a peak SPI of −2.30 and a severity of −9.33. This event 
was followed by another extreme from October 2017 to April 2018, where SPI dropped to −2.70, with a severity of −10.75, the highest recorded 
in Arak, and an intensity of −1.79. Notably, this event coincided with widespread regional droughts visible in other indicators, such as SPEI-12, 
reinforcing its significance in the broader hydroclimatic context of the wetland. 

Overall, these findings suggest that while moderate droughts are a recurring seasonal feature, severe and extreme droughts are 
episodic but highly impactful, often linked to multi-season precipitation anomalies. Tafresh and Komijan tend to experience higher drought 
intensities, whereas Arak is more prone to broader, prolonged events. This spatial heterogeneity underscores the importance of station-specific 
monitoring and localized drought preparedness planning across the Meighan watersher. 

 

 
 

Figure 14: Drought Occurrence Frequency Based on the Intensity of Drought obtained from SPI-3 
 

Table 5: Drought Characteristics 
Station Name Start Date End Date Duration Peak Severity Intensity 

Arak Dec 1998 Mar 1999 3 -1.60 -3.11 -1.04 
 May 1999 Aug 1999 3 -1.64 -4.02 -1.34 
 Apr 2000 Oct 2000 6 -2.30 -9.33 -1.56 
 Aug 2003 Jan 2004 5 -1.22 -3.08 -0.62 
 Apr 2008 Sept 2008 5 -1.92 -6.04 -1.21 
 Oct 2010 Mar 2011 5 -1.28 -4.31 -0.86 
 Feb 2012 Apr 2012 2 -1.94 -3.19 -1.60 
 Aug 2016 Dec 2016 4 -1.67 -4.89 -1.22 
 Oct 2017 Apr 2018 6 -2.7 -10.75 -1.79 
 Feb 2021 Aug 2021 6 -2.26 -8.97 -1.50 
 Apr 2022 Aug 2022 4 -1.73 -5.87 -1.47 
 Dec 2023 Apr 2024 4 -1.83 -4.63 -1.16 
       

Tafresh Dec 1998 Aug 1999 8 -1.59 -7.59 -0.95 
 Apr 2000 Oct 2000 6 -3.12 -12.18 -2.03 
 Aug 2003 Jan 2004 5 -1.49 -3.84 -0.77 
 Aug 2006 Oct 2006 2 -1.47 -2.75 -1.38 
 Apr 2008 Oct 2008 6 -2.05 -6.91 -1.15 
 Aug 2010 Mar 2011 7 -1.45 -6.21 -0.89 
 Feb 2012 Apr 2012 2 -2.38 -3.68 -1.84 
 Aug 2016 Dec 2016 4 -1.60 -5.84 -1.46 
 Oct 2017 Feb 2018 6 -2.91 -10.61 -1.77 
 Sep 2018 Oct 2018 1 -1.49 -1.49 -1.49 
 Feb 2021 Nov 2021 9 -2.31 -8.59 -0.95 
 Apr 2022 Aug 2022 4 -1.46 -4.64 -1.16 
 Dec 2023 Mar 2024 3 -1.67 -3.57 -1.19 
       

Komijan Nov 1998 Aug 1999 9 -1.92 -9.69 -1.08 
 Apr 2000 Oct 2000 6 -2.58 -9.88 -1.65 
 Aug 2003 Oct 2003 2 -1.79 -3.57 -1.79 
 Aug 2006 Oct 2006 2 -1.51 -2.89 -1.45 
 Apr 2008 Oct 2008 6 -2.18 -6.85 -1.14 
 Oct 2010 Mar 2011 5 -1.41 -3.96 -0.79 
 Feb 2012 Apr 2012 2 -2.24 -3.40 -1.70 
 Aug 2016 Dec 2016 4 -1.60 -5.77 -1.44 
 Oct 2017 Feb 2018 4 -2.33 -7.69 -1.92 
 Sep 2018 Oct 2018 1 -1.39 -1.39 -1.39 
 Feb 2021 Sep 2021 7 -2.16 -9.29 -1.33 
 Feb 2022 Sep 2022 7 -1.73 -8.54 -1.22 
 Dec 2023 Mar 2024 3 -1.65 -3.80 -1.27 
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4.6 Monthly Trend Analysis for SPI-3 and SPEI-3 Across Stations 
Building on the non-parametric methodology outlined in Section 3.8, monthly trend analyses were applied to SPI-3 and SPEI-3 time 

series across the six synoptic stations using the MAKESENS v1.0 tool. The Mann–Kendall (MK) test identifies the direction (Z statistic) and 
significance of monotonic trends, while Sen’s slope estimates the rate of change per unit time (Q). The statistical significance levels follow the 
MAKESENS convention: 

 *** Highly significant (p < 0.001) 
 ** Significant (p < 0.01) 
 * Moderately significant (p < 0.05) 
 + Weakly significant (p < 0.1) 

 
The SPI-3 trends across all stations were generally weak or non-significant. However, several notable drying patterns emerged (Figure 15): 

 Arak displayed a significant drying trend in February (Z = −2.63, Q = −0.072, **) and a weakly significant trend in March (Z 
= −1.92, Q = −0.045, +). 

 Tafresh exhibited a moderately significant decrease in January (Z = −2.42, Q = −0.065, *) and a weak drying signal in 
February (Z = −1.71, Q = −0.056, +). 

 Other stations, including Komijan, Mahallat, Khomeyn, and Shazand, showed no statistically significant SPI3 trends, and 
Q values were typically near zero, suggesting stable short-term precipitation conditions over time. 

These results indicate that, while some localized and seasonal drying trends are emerging—particularly in late winter—the short-term 
rainfall anomalies represented by SPI-3 remain largely unchanged across the broader region. 

 

 
 

Figure 15: Spatial Distribution of Sen’s Slope of SPI3 
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In contrast to SPI3, the SPEI3 trends showed stronger and more consistent drying patterns, especially in Arak (Figure 16): 
 Arak showed statistically significant drying in January (Z = −2.17, Q = −0.063, *), February (Z = −2.71, Q = −0.072, **), 

March (Z = −2.04, Q = −0.053, *), July (Z = −1.75, Q = −0.045, +), and August (Z = −3.25, Q = −0.087, **). 
 These trends suggest that both late winter and late summer in Arak are becoming increasingly drought-prone due to a 

combination of precipitation deficits and rising evapotranspiration. 
 In the other five stations, no statistically significant SPEI3 trends were detected, but some months showed moderate drying 

tendencies that deserve attention. 
While statistical significance was limited to Arak in the SPEI3 analysis, a few other stations showed moderate drying trends without 

significance, which may indicate emerging or early-stage climatic shifts: 
 Khomeyn (January): Q = −0.057, Z = −1.58 (SPEI3) 
 Shazand (July): Q = −0.051, Z = −1.50 (SPEI3) 

These trends, though not meeting formal significance thresholds, suggest a tendency toward increasing water stress during cooler 
and warmer seasons, respectively. Overall, the Mann–Kendall and Sen’s slope analysis indicates that Arak is the most drought-sensitive station, 
with significant negative trends in both SPI3 and SPEI3, especially from January to March and in late summer. The lack of significance in other 
stations suggests spatial variability in drought evolution, possibly influenced by local topography and microclimate. Importantly, the contrast 
between SPI3 and SPEI3 highlights the growing role of temperature and evapotranspiration in shaping drought patterns, particularly in the 
transitional months. These findings support the need for multi-index drought monitoring and underscore the value of SPEI in capturing thermal 
components of water stress under a changing climate. 

 
 

Figure 16: Spatial Distribution of Sen's Slopes of SPEI 3 
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5.0 Conclusions  
This study evaluated the spatiotemporal variability and trends of meteorological drought in the Meighan Wetland region using multi-

source precipitation and temperature data. By integrating ground-based synoptic observations with satellite (GPM IMERG) and reanalysis 
(ERA5-Land) datasets, the research provided a robust assessment of drought patterns through the Standardized Precipitation Index (SPI) and 
Standardized Precipitation Evapotranspiration Index (SPEI) at 3-, 6-, and 12-month timescales. Validation confirmed the reliability of GPM and 
ERA5-Land data, showing strong agreement at six stations (Arak, Shazand, Komijan, Mahallat, Khomeyn, and Tafresh; R > 0.9 for GPM, R² > 
0.98 for ERA5-Land). Spatial interpolation highlighted elevation-driven rainfall variability, particularly around the Meighan Salt Lake. Major 
drought episodes in 2000–2001, 2008, 2017–2018, and 2021 were identified, with SPEI indicating greater severity due to rising 
evapotranspiration. Strong correlations between SPI and SPEI (R > 0.87, highest at 12-month scales) supported their combined use. Trend 
analysis revealed significant drying in Arak during late winter (January–March) and late summer (July–August) via SPEI-3, with moderate drying 
signals in Khomeyn and Shazand, underscoring the role of temperature in exacerbating drought. 

These findings highlight the increasing influence of temperature and atmospheric demand on drought dynamics in semi-arid regions, 
with implications for wetland sustainability, agricultural water demand, and groundwater recharge in the Meighan basin. To translate these 
insights into actionable strategies, several policy measures are recommended. First, GPM and ERA5-Land datasets should be adopted for real-
time drought monitoring to enhance early warning systems, leveraging their validated accuracy in data-scarce environments. Second, water 
conservation in Arak should be prioritized, implementing efficient irrigation and groundwater recharge programs to address significant drying 
trends in late winter and summer. Third, SPEI should be incorporated into regional drought management frameworks to account for 
evapotranspiration-driven severity, particularly during transitional seasons. Fourth, community preparedness programs, including water 
conservation training and alternative livelihood strategies, should be developed to mitigate the impacts of severe drought episodes such as 
those in 2000, 2008, 2017, and 2021. Finally, collaboration among Markazi Province authorities, the Regional Water Company, and the 
Department of Environment should be fostered to integrate these findings into water allocation and wetland conservation policies. Implementing 
these measures can strengthen adaptive water resource management and enhance resilience in Iran’s vulnerable interior basins. 

Future research should extend this analysis by incorporating hydrological and agricultural drought indices, exploring downscaled 
climate projections, and integrating land-use change scenarios to further inform drought risk assessments and support spatially targeted 
management strategies. 
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