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• High salinity stress inhibited the growth of Kang Kog pumpkin, whereas low salinity stress 

had minimal impact on its development. 

 

• Chlorophyll fluorescence and chlorophyll b content were not significantly affected by 
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• Fiber strand thickness and cuticle thickness were identified as key anatomical traits for 

assessing and understanding salt tolerance in pumpkins. 
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Abstract: Pumpkin is an important economic crop with high nutritional value. Different pumpkin 

varieties experience diverse growth problems due to soil salinity. This research studied the 

physiological and anatomical adaptations of the Kang Kog pumpkin cultivar to salinity stress. 

Pumpkin seedlings were grown under a hydroponic system using Hoagland's solution with NaCl 

concentrations of 0, 25, 50, 75, and 100 mM for four weeks. Results showed that pumpkin leaf 

number, leaf width, leaf length, root number, root length, plant height, stem diameter, fresh weight, 

and dry weight significantly decreased after exposure to high NaCl concentrations. Chlorophyll a 

and green intensity measured as SPAD units also significantly decreased, while chlorophyll 

fluorescence (Fv/Fm, Fv’/Fm’) and chlorophyll b content of all treated groups were not significantly 

different when compared to the control group. Fiber strands and cuticles in all treatments were 
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significantly thicker compared to the control group, while vessel diameters and vascular bundle 

sizes of the treated groups significantly decreased compared to the control group. Results showed 

that salinity stress did not impact chlorophyll b, and chlorophyll fluorescence. Kang Kog pumpkins 

can adapt and grow in slightly saline environments. Our results provide important information for 

pumpkin breeding programs efforts that can be used in combining with other agronomic 

characters to improve tolerant cultivars under initial salinity stress tolerance.  

 

Keywords: Anatomical Adaptation, Growth, NaCl, Pumpkin, Salinity Stress 

 

INTRODUCTION 

 

Soil salinity refers to the presence of excessive amounts of soluble salts in the soil that negatively 

impact agricultural productivity, leading to low economic returns (Hu & Schmidhalter 2002). 

Salinity stress reduces plant growth and development by adversely impacting physiological 

processes through increased intracellular osmotic pressure. This leads to the accumulation of 

sodium at toxic levels (Zhao et al. 2021), which negatively affects plant growth and reproduction 

(Shrivastava & Kumar 2015) by producing nutritional and hormonal imbalances (Blaylock 1994), 

ion toxicity (Shrivastava & Kumar 2015), oxidative and osmotic stress (Qari et al. 2022; Mustafa 

et al. 2023), and increased susceptibility to diseases (Mustapha et al. 2022). High salt 

concentration alters soil porosity and hydraulic conductivity, leading to low soil water potential and 

physiological drought conditions (Mehnert & Jennings 1985; van Dijk et al. 2017). Plants respond 

to salinity stress by accumulating compatible solutes, redistributing ions, and increasing 

endogenous abscisic acid (ABA) content. Under saline stress conditions, plants exhibit 

physiological and biochemical adaptations by producing antioxidant chemicals, suitable solute 

synthesis, and ion homeostasis. Previous studies reported that plant adaptability and salt stress 

tolerance are significantly influenced by microtubules (Chun et al. 2021), plant growth-promoting 

bacteria (Shilev 2020), phytohormones (Kaya et al. 2009; Anjum et al. 2023), and some organic 

acids (Yang et al. 2023). Crop species vary in their response to salinity stress, with some showing 

significant reductions in yield components and overall yield. 

 Pumpkin is considered a healthy vegetable that is rich in fiber, vitamins, minerals, and 

antioxidants (Aziz et al. 2023). Salt stress has significant negative impacts on pumpkin growth. 

Previous studies have shown that salt stress affects pumpkin and squash growth including 

germination, seedling development, and overall plant growth (Kurum et al. 2013; Dantas et al. 

2019; Opande & Khasabulli 2022; Taratima et al. 2022; Tarchoun et al. 2022; Taratima et al. 
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2023; Irik & Bikmaz 2024). Seedling growth was inhibited at all salt stress levels, with root length 

more severely inhibited than shoot length. Different salt concentrations affect the 

malondialdehyde (MDA) content, free proline, and chlorophylls in pumpkin and squash seedlings, 

with oxidative stress and damage to cellular structures leading to increased evapotranspiration 

which adversely impacts plant growth and fruit setting (Sevengor et al. 2011).  

In Thailand, the inland salt-affected soils are formed by geochemical processes and cover 

approximately 1.841 million ha in the northeastern, whereas coastal salt-affected soils are formed 

from seawater scattered along the coast of 0.425 million ha, while 0.063 million ha are found in 

other regions. Typically, salinity soils are categorized as slightly, moderately, severely salt-

affected soils and potential salt source area. This classification aligns with the management 

practices (Arunin & Pongwichian 2015). Nowadays, the improvement of saline soils continues to 

be carried out, including the selection of appropriate plant species suitable for growing in saline 

soil areas. One of the interesting plants is pumpkin due to its deep roots, which facilitate the 

absorption of groundwater (Bischoff 2018). However, information on how various local Thai 

pumpkin cultivars respond to different salinity levels is still deficient. To the best of our knowledge, 

there are no publications on the physiology and anatomical traits of pumpkin (Cucurbita moschata 

Duchesne.) cv. Kang Kog, the most popular pumpkin variety grown in Thailand, in relation to 

salinity stress. Therefore, this research investigated the physiological and anatomical responses 

of C. moschata cv. Kang Kog to different salinity stress levels under hydroponic conditions. The 

results will enhance understanding and support the improvement of pumpkin cultivation programs 

under various salinity levels. 

 

MATERIALS AND METHODS 

 

Plant materials and culture conditions 

 

Seeds of Cucurbita moschata cv Kang Kog were germinated separately in 3x5 cm soil pots with 

daily watering for 14 days. Following germination, seedlings with one to two leaves were placed 

in 10 by 25 cm rectangular tubes with a foam sheet as explants for hydroponic cultivation using 

the Deep Flow Technique (DFT). One liter of Hoagland's solution (pH 5.5) was added to each 

tube, and the tubes were then aerated with an air pump (model ACQ-007, 75 watts, 100 l/s). The 

pumpkin seedlings were cultivated for four weeks at 27 ± 2 °C under 40 μmol m-2 s-1 light intensity 

in Hoagland's solution containing 0 as the control, 25, 50, 75, and 100 mM NaCl. Plant height, 
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biomass, stem diameter, healthy roots longer than 2 cm, leaves longer than 2 cm, and leaf size 

were recorded.  

 

Green intensity and chlorophyll content  

 

A SPAD-502 Plus Chlorophyll Meter was used to measure the amount of green leaf at the base, 

middle, and apex of mature leaf blades in SPAD units. Total chlorophyll, chlorophyll a, and 

chlorophyll b were used to measure the amount of chlorophyll present in mature leaves. Five 

milliliters of 80% acetone were added to 0.1 g of mature leaves and ground in a mortar until all 

the green material had dissolved. Then, 20 ml of 80% acetone was added and the mixture was 

filtered through filter paper. A spectrophotometer (Spectronic 20) was utilized to measure the 

absorbance values at 645 and 663 nm, with 80% acetone serving as the blank. The formulae 

below were applied to determine the chlorophyll contents following Arnon (1949).  

 

Total chlorophyll (mg/g tissue) =  20.2 (A645) + 8.02 (A663) × V / (1,000 × W) 

Chlorophyll a (mg/g tissue)      =  12.7 (A663) - 2.69 (A645) × V / (1,000 × W) 

Chlorophyll b (mg/g tissue)      =  22.9 (A645) - 4.68 (A663) × V / (1,000 × W) 

 

where, V = total volume of solution (ml), and W = weight of leaves (g). 

 

   Mature leaves were measured using a Chlorophyll Fluorometer Handy PEA as dark-

adapted leaves (30 min dark) (Fv/Fm units) and light condition (Fv'/Fm' units) to examine 

chlorophyll fluorescence (Theerakulpisut 2016), with each measurement repeated three times.  

 

Anatomical investigation 

 

Mature pumpkin stems were cut at 1-3 cm from the root, fixed in 100 ml of FAA70 fixative (70% 

ethyl alcohol, acetic acid, and formaldehyde; 90:5:5) (Johansen 1940), and used as explants in 

this anatomical study. A free-hand method was used to section the explants transversely. The 

samples were first stained with 1% (w/v) Safranin O solution before dehydrating using an ethyl 

alcohol and xylene series and then mounted using DePeX. Anatomical features such as fiber 

strand thickness, cuticle thickness, vascular bundle size, and vessel size were recorded using a 

light compound microscope (ZEISS Axiocam ERc 5s). The Axio Vision LE64 application was then 

used to score these features following Taratima et al. (2019).  
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Statistical analysis 

 

Each treatment was conducted in triplicate using a completely randomized design (CRD). One-

way analysis of variance (one-way ANOVA) was used to verify the statistical analyses, with the 

post hoc test (Duncan's test) at 95% confidence level used to compare mean values. Principal 

component analysis (PCA) and Pearson correlation analysis were accomplished using Origin 

2022 software to examine the growth and anatomical response of Kang Kog pumpkin plants. 

 

RESULTS 

 

After four weeks of NaCl treatment, the growth of pumpkin seedlings including plant height, root 

number and length, leaf number and size, and fresh and dry weight reduced as NaCl 

concentration increased (Table 1, Fig. 1). The leaves turned pale-yellow after two weeks of 

treatment. Leaf size and number decreased compared to the control group. In the 100 mM NaCl 

group, the leaves withered in the third week and completely dried in the fourth week. Therefore, 

chlorophyll content and green intensity values were not reported in this treatment. Increased 

salinity also resulted in a decrease in root number. All the experimental groups showed a 

statistically significant reduction in root number compared to the control group.  

 

Table 1: Growth, physiological and anatomical characteristics of Kang Kog pumpkin after four 

weeks of different salinity stress treatments.   

Characteristic NaCl concentration (mM) (X̅ ± SD) 

0 25 50 75 100 

Leaf number/plant 9.60 ± 2.3a 7.40 ± 0.5b 6.40 ± 0.5b 4.00 ± 1.0c 1.20 ± 0.4d 

Leaf width (cm) 13.42 ± 1.8a 10.50 ± 1.0b 8.12 ± 1.5c 6.70 ± 1.5d 4.70 ± 0.3e 

Leaf length (cm) 11.20 ± 1.5a 9.46 ± 0.9b 7.04 ± 1.3c 6.70 ± 1.5c 4.00 ± 0.1d 

Root number/plant 27.40 ± 3.1a 21.60 ± 4.1b 13.60 ± 2.9c 6.60 ± 3.1d 6.00 ± 1.7d 

Root length (cm) 21.36 ± 1.5a 20.14 ± 1.4a 19.20 ± 3.4a 13.64 ± 4.5b 12.98 ± 1.9b 

Plant height (cm) 34.89 ± 5.7a 20.22 ± 0.8b 16.52 ± 3.8b 11.46 ± 1.4c 10.50 ± 0.6c 

Stem diameter (cm) 0.78 ± 0.1a 0.62 ± 0.0b 0.73 ± 0.0a 0.57 ± 0.0b 0.39 ± 0.1c 

Fresh weight (g) 27.24 ± 1.2a 22.39 ± 1.4b 15.46 ± 1.2c 9.31 ± 1.4d 2.50 ± 0.3e 
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Dry weight (g) 3.42 ± 0.2a 2.67 ± 0.3b 2.15 ± 0.2c 1.30 ± 0.1d 0.46 ± 0.0e 

Total Ch (mg/g FW) 4.19 ± 0.6a 3.61 ± 0.6ab 2.97 ± 0.9b 2.99 ± 0.7b ns 

Ch a (mg/g FW) 2.57 ± 0.4a 2.11 ± 0.3ab 1.74 ± 0.3bc 1.39 ± 0.1c ns 

Ch b (mg/g FW) 1.61 ± 0.2a 1.51 ± 0.1a 1.23 ± 0.2a 1.60 ± 0.3a ns 

SPAD (units) 40.98 ± 7.6a 35.07 ± 4.7ab 31.50 ± 3.5b 17.68 ± 5.3c ns 

Ch flu. Fv’/Fm’ 0.80 ± 0.0a 0.81 ± 0.0a 0.79 ± 0.0a 0.76 ± 0.0a ns 

Ch flu. Fv/Fm 0.73 ± 0.0a 0.72 ± 0.0a 0.71 ± 0.0a 0.71 ± 0.0a ns 

Fiber strand thickness 

(µm) 

58.18 ± 

11.5b 

67.03 ± 5.6ab 68.41 ± 6.5ab 73.93 ± 7.6a 61.91 ± 6.7b 

Cuticle thickness (µm) 2.62 ± 0.8c 3.96 ± 1.3ab 4.09 ± 0.8ab 5.06 ± 1.1a 3.23 ± 0.4bc 

Vas. Bun. - width (µm) 603.07 ± 

100.1a 

534.71 ± 

78.9b 

478.84 ± 

84.2bc 

388.26 ± 

46.3c 

167.61 ± 

35.8d 

Vas. Bun. - length (µm) 749.83 ± 

108.9ab 

877.90 ± 

65.6a 

597.73 ± 

108.3bc 

491.48 ± 

78.4c 

228.63 ± 

42.8d 

Vessel diameter (µm) 130.41 ± 

9.1a 

96.58 ± 10.1b 74.19 ± 11.3c 42.70 ± 4.6d 35.99 ± 2.0d 

Mean ± SD values followed by different superscripts in the same row are significantly different according to ANOVA 

and Duncan’s Multiple Range Test (p < 0.05). Ch = Chlorophyll; Ch flu. = Chlorophyll fluorescence; Vas. Bun. = Vascular 

bundle; ns = non-scorable 

 

 

Figure 1: Growth and leaf features of Kang Kog pumpkin grown under different salinity stress 

levels for four weeks; scale = 5 cm.  
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Salinity stress impacted the chlorophyll content in Kang Kog pumpkin leaves. Chlorophyll b 

content decreased in all treatments but were not significantly different (Table 1), while chlorophyll 

a content and green intensity (SPAD units) of the 50 and 75 mM NaCl treatment groups were 

significantly lower than the control group. Chlorophyll fluorescence measured in dark-adapted 

leaves and light condition decreased with increasing sodium chloride concentrations but were not 

significantly different.  

Stem anatomical analysis showed that fiber strand thickness in the cortex significantly 

enlarged when NaCl concentration increased, except for the 100 mM NaCl group. The highest 

fiber strand thickness was found in plants from the 75 mM NaCl group, while the lowest was 

recorded in the control group (Table 1, Fig. 2A).  The cuticle thickness increased with increasing 

concentrations of NaCl, with statistical significance. In all groups, cuticle thickness was 

significantly lower than the 75 mM NaCl group, except for the 100 mM concentration group (Table 

1, Fig. 2B). Vascular bundle sizes of all treatments dramatically decreased when NaCl 

concentration increased, except for the vascular bundle length of the 25 mM NaCl group. Vessel 

diameter significantly decreased with increasing NaCl concentration. The highest vessel diameter 

was measured in the control group, while the smallest was found in the 100 mM NaCl group 

(Table 1, Fig. 2C).  
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Figure 2: Anatomical characteristics of pumpkin stems grown under salinity stress. (A) fiber 

strand in cortex region (arrows), (B) cuticle thickness (arrows), (C) vessel in vascular bundle 

(arrows). 

 

Correlation analysis between the nine growth characteristics and five anatomical traits revealed 

that fiber strand thickness and cuticle thickness exhibited a negative correlation (Fig. 3). Principal 

Component Analysis (PCA) was used to analyze the relationship between various factors and the 

stress response on the growth, physiological, and anatomical alterations of Kang Kog pumpkin 

seedlings. A PCA biplot was generated to show the correlation coefficients. The data variations 
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were explained by fourteen components. The biplot, produced using PC1 and PC2, clarified the 

data correlation at 96.10%. PC1 exhibited 80.70% of the correlation, while PC2 showed 15.40% 

of the correlation (Fig. 4). Vascular bundle – length (VBL), vascular bundle – width (VBW), stem 

diameter (SD), leaf number/plant (LN), leaf length (LL), fresh weight (FW), dry weight (DW), and 

root length (RL) were positively correlated and situated on the positive side of PC1, while leaf 

width (LW), vessel diameter (VD), root number (RN), and plant height (PH) were located on the 

negative side of PC1. The clusters of 75 and 100 mM NaCl treatments were plotted in the two 

left-side quadrants due to the positive correlation between cuticle thickness (CT) and fiber strand 

thickness (FT).  

 

 

 

Figure 3: Pearson correlation analysis between 14 characteristics of Kang Kog pumpkins grown 

under different salinity stress levels. (LW = Leaf width; LN = Leaf number/plant; LL = Leaf length; 

RN = Root number/plant; RL = Root length; PH = Plant height; SD = Stem diameter; FT = Fiber 

strand thickness; CT = Cuticle thickness; VBW = Vascular bundle – width; VBL = Vascular bundle 

– length; VD = Vessel diameter). 
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Figure 4: PCA biplot illustrating the relationships between the parameters and how they affected 

the treatments (LW = Leaf width; LN = Leaf number/plant; LL = Leaf length; RN = Root 

number/plant; RL = Root length; PH = Plant height; SD = Stem diameter; FT = Fiber strand 

thickness; CT = Cuticle thickness; VBW = Vascular bundle – width; VBL = Vascular bundle – 

length; VD = Vessel diameter). 

 

DISCUSSION 

 

Results showed that salinity stress impacted Kang Kog pumpkin growth, similar to other plant 

species such as melon, sorghum, water dropwort, and watermelon (Akrami & Arzani 2019; Zhang 

et al. 2020; Kumar et al. 2021; Shin et al. 2021). Salinity stress causes plants to develop more 

slowly, with reduced leaf size and root elongation (Neves-Piestun & Bernstein 2001). Plant roots 

in soil or a solution containing high salt concentration incur altered water potential (ψ). Salinity 

conditions induce lower water potential, causing the water in the plant roots to diffuse out, thereby 

impacting the absorption of water and nutrients, especially potassium, which is necessary for 

plant growth (Horie et al. 2012; Park et al. 2016; Zhao et al. 2021; Lu & Fricke 2023). When plants 
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are exposed to long-term salinity stress, high amounts of NaCl accumulate within leaf cells, which 

affects biochemical processes, especially photosynthesis (Carillo et al. 2011; Isayenkov & 

Maathuis 2019). The plants had higher transpiration rates because of high salt accumulation in 

the leaves (Tian et al. 2020). This caused the leaves to turn yellow, wither and eventually die.  

Pumpkins are considered to be glycophytes as plants that are sensitive to salinity but have 

a limited tolerance to salinity stress (Zhu et al. 2008) because of their deep root structure which 

promotes groundwater absorption (Bischoff 2018). Pumpkin sensitivity to salinity levels depends 

on the species or variety. Previous studies found that C. moschata was more sensitive to salinity 

stress than C. maxima because C. maxima had higher levels of ABA accumulation in its leaves, 

which limited water loss by rapidly closing the stomata in the early stages of salinity stress (Niu 

et al. 2018). Our results concurred with previous reports on Cucurbita species grown under salinity 

stress, with decreased growth, small pale-yellow leaves, short, dwarfed stems, and a decrease in 

both fresh and dry weight (Tang et al. 2018) . Increases in the antioxidant enzymes superoxide 

dismutase (SOD), catalase (CAT), glutathione reductase (GR), and ascorbate peroxidase (APX) 

caused lipid peroxidation (Sevengor et al. 2011). This result supported our earlier research, which 

suggested that ‘Butternut’ pumpkin (Taratima et al. 2022) , including the ‘Laikaotok’ pumpkin - a 

local cultivar in Thailand ( Taratima et al. 2023) , was negatively impacted by saline stress. 

However, this effect depends on the different salinity levels.  

  The results from this study proved that the photosynthetic efficiency of Kang Kog pumpkin 

decreased after cultivation under salinity stress. Following salinity treatment in this investigation, 

the total chlorophyll and chlorophyll a contents were significantly lower than the control, while the 

leaf green intensity (SPAD unit), chlorophyll b content and chlorophyll fluorescence measured 

under both dark-adapted (Fv/Fm units) and light condition (Fv’/Fm’ units) slightly decreased but 

were not statistically different from the control. This result concurred with numerous reports that 

salinity stress reduced the efficiency of photosynthesis in many plant species such as sweet 

sorghum varieties (Baiseitova et al. 2018), common bean (Phaseolus vulgaris L.) (Taïbi et al. 

2016), Kalidium foliatum (Gong et al. 2018), and Reaumuria soongorica (Yan et al. 2022). Plants 

that experience salinity stress exhibit lower levels of photosynthetic pigments, such as 

carotenoids and total chlorophyll, leading to chlorosis, which manifests as pale leaves, and a 

decrease in photosynthetic activity (Trifunović-Momčilov et al. 2021). This is caused by the 

accelerated breakdown or inhibition of chlorophyll synthesis (Santos 2004). Moreover, salinity 

stress affects the photosynthetic process because when the leaves lose water, the stomata close, 

resulting in reduced carbon dioxide fixation (Xu & Zhou 2008; Takagi et al. 2009; De Oliveira et 

al. 2013; Hnilickova et al. 2017). Changes in the cell membrane properties also limit carbon 



 

13 
 

dioxide movement through the cells, while reduced potassium absorption impacts the 

photosystem (Parihar et al. 2015; Wang et al. 2017), depending on the efficiency of the light 

reaction (Qu et al. 2012). Therefore, when plants are exposed to salinity stress, it affects the 

activity of photosystem II (PSII) (Allakhverdiev et al. 2000), causing damage and reducing the 

photochemical reaction (ФPSII) (Misra et al. 2001; Srivastava & Sharma 2021). Salinity stress 

levels are typically determined by measuring chlorophyll fluorescence yield, which is often 

reduced under salt stress (Kalaji et al. 2011; Harizanova & Koleva-Valkova 2019; ALKahtani et 

al. 2020; Hosseini et al. 2023). The chlorophyll fluorescence of Kang Kog pumpkin in this study 

slightly decreased after cultivation under different salinity levels but the values obtained were not 

significantly different from the control. Chlorophyll fluorescence analyzed in this study 

corresponded to chlorophyll b content that was not significantly different between the treatments 

and the control. This result agreed with Gong et al. (2018) who found that salinity stress did not 

affect chlorophyll b content but impacted total chlorophyll and chlorophyll a of Kalidium foliatum. 

Plants exposed to salinity stress generate free radicals to destroy the thylakoid membrane 

(Yamane et al. 2004). This causes chlorophyll to become damaged and lose its properties, turning 

it into a colorless substance. This process is known as photobleaching of chlorophyll (Lingvay et 

al. 2020). 

  In addition to affecting growth, physiological and biochemical characteristics, salinity 

stress also impacts plant anatomy, particularly after salinity stress treatment, vascular bundle size 

and vessel diameter of all treatments group in this investigation decreased compared to the 

control group. This result concurred with previous studies in barley seedlings (Hordeum vulgare 

L.) (Atabayeva et al. 2013), Gazania harlequin L. (Younis et al. 2014), Astragalus gombiformis 

(Boughalleb et al. 2017), Salicornia freitagii (Akcin et al. 2017), and tomato (Solanum 

lycopersicum Mill.) (Alsafari et al. 2019). Vascular bundles and vessel diameters respond to 

salinity stress by shrinking to reduce water uptake (Hampson & Simpson 1990). When plants are 

subjected to salt stress, they absorb ions such as Na+ and Cl-, which may be detrimental to their 

cells. Therefore, reduced vascular bundle and vessel size involve the controlled absorption of Na+ 

and/or Cl-, which is the main process influencing salt tolerance (Singh et al. 2017). In this 

investigation, two notable anatomical characteristics — fiber strand thickness and cuticle 

thickness — were identified as important indicators for evaluating salt-tolerant pumpkin. Our 

results showed that these two anatomical traits increased after salinity treatment, particularly at 

in the 75 mM NaCl treatment. This result aligns with previous studies on certain plant species 

after salinity treatment, such as soybean (Dolatabadian et al. 2011) and ‘Butternut’ pumpkin 

(Taratima et al. 2022). However, the fiber strands discussed in this study refer to sclerenchyma 
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fibers, not cotton fibers or other elongated epidermal cells (hairs). Growing cotton plants under 

salt stress conditions results in lower-quality fiber (Chaudhary et al. 2024). 

  Generally, fiber plant cells have secondary cell walls composed of cellulose, 

hemicellulose, lignin, suberin, pectin, and other polysaccharides (Zhao et al. 2021). Under salinity 

stress, cell wall synthesis is controlled by intricate transcriptional systems incorporating 

phytohormones, especially ABA (Zhong et al. 2010; Endler & Persson 2011; Wang et al. 2020). 

Previous reports revealed that plant response to salinity stress is greatly influenced by the 

biological functions of cellulose, lignin, and other polysaccharides present in the cell walls (Endler 

& Persson 2011; Liu et al. 2018). Plant cells exposed to salt stress adapt by building up lignin and 

strengthening their cell walls. This phenomenon proves that lignin is crucial for plant adaptation 

under salt stress (Zhao et al. 2021). The thickening of the cuticle layer is an important mechanism 

that helps plants to reduce cell water loss. Under severe salinity stress plants lose water until their 

cells shrivel up and die (Kosma & Jenks 2007; Samuels et al. 2008). 

 

CONCLUSIONS 

 

Pumpkins have a wide range of cultivars that develop differently under salt stress. This study 

showed that the growth of Kang Kog pumpkin was impacted by moderate and high salinity stress 

conditions but the plant was able to adapt and grow under slight salinity stress. Chlorophyll b, and 

chlorophyll fluorescence of the treated groups were not significantly different from the control 

group, despite the reduced growth, demonstrating the physiological adaptation of this pumpkin 

cultivar. Characteristics indicating anatomical adaptation under salt stress conditions included 

fiber strand thickness and cuticle thickness. These traits can be used to evaluate the salinity 

tolerance of pumpkins or other related plant species. The knowledge gained from this research 

can be used to support planting program of local cultivar pumpkins in various saline soil areas in 

Thailand. Nevertheless, this study was limited to the seedling stage of hydroponic systems. To 

more definitively confirm the findings, additional research is needed in the future extending to 

harvesting stage, including planting in soil with varying salinity levels. 
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