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Highlights

• Rhizobacteria enhance strawberry growth, yield and quality: The presence of
beneficial rhizobacteria (e.g., Bacillus sp., Azospirillum sp., Azotobacter sp.,
Pantoea sp. and Pseudomonas sp.) has been demonstrated to enhance nutrient
availability and promote plant growth by nitrogen fixing, solubilising phosphorus
and potassium, and producing phytohormones and exopolysaccharides (EPS).

• Rhizobacteria enhance plant resilience: The rhizobacteria play a pivotal role in
mitigating abiotic stresses and against pathogens as biocontrol agents that are
prevalent in tropical climates.

• Potential for sustainable strawberry cultivation in tropical regions: The rhizobacteria-
based biofertilisers offers a sustainable alternative to chemical fertilisers, thereby
reducing environmental impact while maintaining high agricultural productivity,
emphasising their role in sustainable tropical agriculture.
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Abstract: In tropical regions, high temperatures and low nitrogen (N) and phosphorus 
(P) in soil limit plant performance and fruit production. The soil-beneficial microbes, 
including rhizobacteria, have the potential to overcome the nutrient problems in the soil. 
Rhizobacteria fix the dinitrogen, solubilise the P and potassium (K), and produce hormones 
and other metabolites to stimulate plant development and resistance against environmental 
challenges like inadequate soil fertility, heavy metal concentrations or drought. Bacterial 
genera that occur for promoting growth is Bacillus sp., Azospirillum sp., Azotobacter sp, 
Pantoea sp. and Pseudomonas sp. Despite the prominent role of rhizobacteria in agriculture 
and the economic value of strawberries, the potential use of rhizobacteria as a biofertiliser 
in strawberry cultivation in tropical areas is rarely discussed and reviewed. The information 
obtained from publications from 2014–2023 by using the keywords of Plant Growth 
Promoting Rhizobacteria (PGPR), tropics, biofertiliser, N fixation, P and K solubilisation,  
P mineralisation, phytohormones and strawberry is organised according to the rhizobacteria, 
mechanisms by which they boost plant growth, and research location in tropical area. This 
review focuses on evaluating (i) the mechanism of rhizobacteria to increase plant growth, 
(ii) the role of rhizobacteria on strawberry growth, yield and quality and (iii) the impact of 
rhizobacteria on biotic and abiotic stress alleviation.

Keywords: Biofertiliser, Rhizobacteria, Review, Strawberry, Tropical

https://doi.org/10.21315/tlsr2025.36.2.15
https://doi.org/10.21315/tlsr2025.36.2.15
https://doi.org/10.21315/tlsr2025.36.2.15


Febby Fitriyani et al.

318

INTRODUCTION

Strawberry (Fragaria × ananassa, Duch.) is a hybrid of Rosaceae family plants, 
Fragaria chiloensis and Fragaria virginian (de Moura et al. 2022). It holds substantial 
economic value across various industries (Simpson 2018). Major producers such 
as China, the United States and Mexico collectively contribute half of the global 
supply, which exceeded 9 million tons in 2019 (FAO). Cultivation spans tropical, 
subtropical and temperate zones, with tropical cultivation typically at high altitudes 
in mountainous areas (de Andrade et al. 2019). 

Due to high drought, temperature and soil-borne diseases, challenges 
persist in tropical cultivation (Khammayom et al. 2022). Intensive weathering 
processes in tropical regions result in low soil acidity, organic carbon and limited 
nitrogen and phosphorus availability (Piamonte et al. 2014). High precipitation 
can lead to nutrient leaching due to organic matter degradation, which further 
compounds these challenges (Quan et al. 2022).

Open-field cultivation is commonly practiced, but soil-borne diseases pose 
a significant threat. Chemical fertilisers are extensively used to augment nutrient 
deficiencies, increasing yield (Maurya et al. 2017). Phytophthora and Verticillium 
are essential pathogens that cause rotting and wilting diseases in strawberries 
(Fan et al. 2018). Inoculating with plant growth-promoting rhizobacteria (PGPR) 
has shown promise in enhancing growth and stress tolerance, offering eco-friendly 
and cost-effective solutions to increase strawberry yield (Naamala & Smith 2020). 

Rhizobacteria application as biostimulants, biofertilisers or biocontrol 
agents has surged, recognised for their economic benefits, enhanced yields and 
environmental sustainability (Koskey et al. 2021). The bacteria directly influence 
plant growth by providing nutrients through nitrogen fixation and phosphate 
and potassium solubilisation, phytohormones and disease protection alongside 
indirect mechanisms involving the production of volatile compounds, siderophores, 
exopolysaccharides and antibiotics (Fig. 1). Rhizobacteria are crucial in inducing 
systemic resistance, reducing disease intensity and increasing plant development 
against stressful conditions, significantly contributing to plant resilience (Naamala 
& Smith 2020).

Widely used genera of rhizobacteria are Nitrogen fixer bacteria (NFB) 
such as Azotobacter, Azospirillum, Bradyrhizobium and Rhizobium; Phosphate 
solubilising bacteria (PSB) such as Bacillus sp. and Pseudomonas sp. and 
Potassium solubilising bacteria (KSB), Bacillus mucilaginous (Azizoglu 2019). 
Numerous other genera have been shown to promote plant growth and produce 
phytohormones, such as auxin, gibberellin and cytokinin (Chebotar et al. 2022). 
Certain Bacillus species have been reported to enhance the percentage of 
significant macroaggregates, improving the soil structure and root development 
through exopolysaccharides (EPS) production (Vikram et al. 2022; Costa et al. 
2018).

Balanced nutrient management, incorporating chemical, organic and 
microbial-based fertilisers, is advocated for sustainable growth (He & Dijkstra 
2014). Rhizobacteria play a crucial role in improving soil and fruit quality while 
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enhancing plant resilience to various stressors (Hindersah et al. 2019; Redondo-
Gómez et al. 2022). This review reported the potential role of rhizobacteria in 
promoting strawberry growth and productivity in tropical regions, emphasising their 
role in the soil and plant health.

Figure 1: Rhizobacteria mechanism as direct and indirect to increase plant development.

RHIZOBACTERIA MECHANISM FOR INCREASING PLANT GROWTH

In tropical soils, where nitrogen, phosphorus and potassium availability is low, 
rhizobacteria enhance the efficient use of chemical fertilisers by reducing fertiliser 
doses (de Andrade et al. 2019). According to Le et al. (2019), they contribute 
to nitrogen fixation, phosphate and potassium solubilisation, and stress tolerance 
promotion. Rhizobacteria synthesise organic acids and enzymes, which solubilise 
and mineralise P, aiding in heavy metal stress tolerance (Ducousso-Détrez et al. 
2022). Additionally, they enhance plant K availability by gluconic and oxalic acid, 
which solubilise insoluble K in soil (Olaniyan et al. 2022).

The rhizosphere is inhabited by NFB that stimulate plant development 
by converting molecular N2 to ammonia gas (NH3), catalysed by nitrogenase, 
an oxygen-sensitive enzyme complex (Le et al. 2019). The N fixation reaction is 
stated elsewhere as the N reduction process: 

Rhizobacteria for Strawberry Cultivation

N2 + 8 H+ + 8 e– → 2NH3 + H2 (1)
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The N fixation requires 16 adenosine triphosphate molecules to convert one 
molecule of N2 to NH. Under nitrogen fixation, PII signal transduction protein 
interacts with the RnfC gene, which controls electron flow to control electron 
transfer to nitrogenase (Batista & Dixon 2019).

The available form of N readily uptake by roots are NH4
+ and NO3

–.  
In the non-symbiotic NFB, NH3 is released from the bacteria into the soil by 
diffusion (Haskett et al. 2022). Dissolved NH3 in soil solution exists in chemical 
equilibrium with ammonium cations, the NH4

+ (du Preez & Burger 1988). The NH4
+ 

in soil solution will be converted to NO3
– by 2-step enzymatic nitrification involving 

ammonia oxidation to nitrite by chemolithotrophic ammonia-oxidizers and nitrite 
oxidation to nitrate by nitrite-oxidizers (Levy-Booth et al. 2014):

2NH4
+ + 3O2 → 2NO2

– + 4H+ + 2H2O           (2)
2NO2

– + O2 → 2NO3
– + energy            (3)

In contrast, another research ensures that fixed N in nonsymbiotic NFB is 
assimilated into bacterial biomass and not excreted into the soil (Batista & Dixon 
2019). Meanwhile, symbiotic NFB provides plants with asparagine, an amino acid 
synthesised in the plant cell by using glutamate released by rhizobia living in the 
nodule (Schwember et al. 2019). Specific mechanisms to increase the availability 
of N in the soil by nonsymbiotic NFB have not been explicitly stated. However, 
many studies have shown the impact of this bacteria on the available N increment 
in soil (dos Santos Cordeiro & Echer 2019; Haerani et al. 2021; Mendes-Santos 
et al. 2017).

The rhizobacteria are involved in the P and K cycle in soil. They produce 
the organic acid to release phosphate from inorganic P (Pi) of Ca, Fe and Al to 
become available for plants (Ducousso-Détrez et al. 2022). The organic acid 
also solubilises K minerals, including micas, muscovite, feldspar, biotite, illite and 
orthoclase (Olaniyan et al. 2022). The well-known short-chain organic acids (C2–
C6 acids) synthesised by rhizobacteria to solubilise the P and K are lactic, citric, 
acetic and succinic acids (Naraian & Kumari 2017; Zhao et al. 2024). They are 
essential intermediate metabolites in bacterial cells and are commonly produced 
from sugar via the microbial Tricarboxylic acid cycle and fermentation (Sun et al. 
2020).

The low-molecular-weight organic acids solubilise the fixed inorganic P 
(Pi) by lowering the soil pH, chelating cations and competing with ortophosphate 
(PO4

−) for adsorption sites in the soil (Saeed et al. 2021). The organic acid can 
solubilise the Pi on soil colloids as chelators of cations such as Fe, Al3+, and Ca2+ 
and compete for P adsorption sites in soil (Menezes-Blackburn et al. 2016). They 
also form a complex metal cation chelation with base cations on soil such as K+, 
Mg2+, and Ca2+ as readily for plant uptakes (Vega et al. 2022). During the process, 
organic acid has a mechanism for soil acidification as the metal becomes soluble 
and is released into the soil solution (Achor et al. 2020).

Organic P (OP) in soil accounts for 42% of the P pool (Menezes-Blackburn 
et al. 2018). OPs contain phosphate groups or P bonded to carbon (C) groups, 
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including orthophosphate monoesters, orthophosphate diesters and phosphonates 
(Cade-Menun 2017) originating from microbial cells and plant and animal debris. 
Bacterial phosphatases catalyse the OP mineralisation to available inorganic P (Pi) 
based on the type of OP substrates (Park et al. 2022). The Pi enters the bacterial 
cytoplasm via a transporter for cell metabolism, and part of the Pi is adsorbed by 
roots. Major (N, P and K) elements available for plants are essential in reducing 
the impact of stress conditions. Many studies have demonstrated that essential 
nutrients such as N and P are related to the mitigation of abiotic stress in plants 
and the reduction of the effect of drought stress (He & Dijkstra 2014). 

The detailed biosynthesis pathway of various phytohormones by individual 
bacteria is limited. Generally, the rhizobacteria, including Azospirillum, Bacillus, 
Pseudomonas and Rhizobium, synthesise the indole acetic acid (auxin) via the 
tryptophan-dependent pathways (Tang et al. 2023). Naturally occurring CKs are 
adenine derivatives; the microbes synthesise the CK via De novo CK and tRNA-
dependent CK biosynthesis pathway (Frébortová & Frébort 2021). Gibberellins 
(GA) are phytohormones characterised by a complex diterpenoid structure. The 
biosynthetic pathways of GA in plants and fungi have been elucidated, although 
knowledge on GA biosynthesis in bacteria remains limited. Symbiotic nitrogen-
fixing Bradyrhizobium japonicum and Sinorhizobium fredii have a putative GA 
biosynthetic operon/gene cluster for encoding the enzymes to produce GA9 (Nett 
et al. 2017).

The challenge of growing strawberries in the field is the soil’s physical 
quality. Tropical soil generally has poor physical properties due to low organic 
C and high clay content, which causes restrained structure and poor infiltration 
(Zhong et al. 2018). EPS produced by rhizobacteria can adhering soil particles 
by forming aggregates around the roots (Costa et al. 2018; Sivapriya 2018). They 
also can improve water holding capacity and reduce proline accumulation and 
antioxidant enzyme activity as tolerant mechanism for drought stress conditions 
(Sandhya & Ali 2015; Naseem et al. 2024). EPS of rhizobacteria such as 
Pseudomonas bathysetes secrete EPS to improve porosity, bulk density, and soil 
aggregate stability to improve micro aggregation (Dar et al. 2021; Olagoke et al. 
2022). Application of some Bacillus species increases the percentage of large 
macro aggregates of > 2 mm (Vikram et al. 2022). This improves the soil structure 
by increasing infiltration and providing better porosity for root development  
(Sharma et al. 2018). 

EPS produced by rhizobacteria enables soil particles to form aggregates 
around the roots, enhances water-holding capacity and facilitates the plant’s uptake 
of nutrients and minerals. Rhizobacteria produce EPS as a protective mechanism 
to shield themselves from abiotic stressors like extreme temperatures, metal 
concentration, drought and biotic threats (Carezzano et al. 2023). The mechanism 
of EPS is to protect bacteria and plant hosts from abiotic stress by maintaining 
and regulation nutrient uptakes and absorption as chelator ions (Paul et al. 2024). 
Moreover, EPS as a biopolymer is involved in metal-binding to facilitate heavy 
metal biosorption (Dhanya et al. 2021). The EPS acts as a chelator by forming 
COO− (carboxyl group) and OH− (hydroxyl ion) to bind cations, including metals, 
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on soils. The EPS of Azotobacter sp. binds Cd and Cr in the contaminated soil 
(Rasulov et al. 2015) to reduce their availability. However, the excretion of EPS 
is also a mechanism for maintaining the balance of C/N ratio when the nitrogen 
in environment is sufficient (Qian et al. 2022). Therefore, EPS as sorption and 
retention mechanism may thus affect the mobility and fate of microbially-derived 
carbon (C), nitrogen (N) and phosphorus (P) in soils (Zhang et al. 2021). 

Role of Rhizobacteria Strawberry Growth, Yield and Quality

In tropical soils, where nitrogen, phosphorus and potassium are often limited, 
rhizobacteria are vital in fixing nitrogen and solubilising phosphorus and potassium 
(Hanyabui et al. 2020). However, soil-borne pathogens pose a challenge, leading 
to damping-off, root rot and vascular wilts exacerbated by continuous cropping 
(Arora et al. 2022). Soilless substrates, typically composed of organic matter and 
inorganic materials, offer a pathogen-free alternative but lack sufficient nutrients, 
necessitating fertiliser applications (Hindersah et al. 2022). Rhizobacteria 
application is feasible in soil-based and soilless cultivation systems (Table 1).

Table 1: Responses of strawberries on rhizobacteria inoculation in soil-based substrates 
and field soil.

(Mikiciuk 

637Ca and 

Increase plant growth, yield and 

et al. 

53/6

quality fruits by substitute 25% of 
chemical fertiliser.

2018)

Increase proline and protein 
levels in the leaves and improve 
chlorophyll content and leaf 
area.

Pseudomonas 

et al. 

Cell growth 
promotion

et al. 
2019)

total antioxidant content. BChi1 and

Alcaligenes 

B. amyloliquefaciens
and Trichoderma
harzianum

Phytohormone 
production

(Es-Soufi 
2020)

Increase strawberry fruit yield 
and fruit weight.

B. amyloliquefaciens

2020)

(Rahman B. amylolequifaciens

IT45

et al. 

Paraburkholderia
fungorum BRRh

(Arikan 

Increase percentage of 
strawberry germination.

Azotobacter (Kumar 
Azospirillum 

53/6
Improve plant development, 
productivity and nutritional 
content under saline stress.

(Arikan et al. Alcaligenes 

Mechanisms
rhizobacteria

Increase the number of roots, 
root activity and improve nutrient 
uptake.

(Liu 

Species of 

Induce earliness in flowering, 

2020)

sp., 

Pseudomonas 

Piriformospora indica

fruiting and increase yield, sp.

References

et al. 

637Ca and 

2022)

2019)

Impact

Increase in nutrient 
availability 

et al. 
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Rhizobacteria function as biofertilisers, providing essential nutrients through 
nutrient-solubilising mechanisms (Hindersah et al. 2022). They enhance strawberry 
development and yield by improving the nutrient supply and phytohormone 
production (Meena 2018; Liu et al. 2022). These microorganisms, including 
Azotobacter sp. and Burkholderia sp, positively impact strawberry development 
and yield by increasing nutrient content (Kumar et al. 2020). Various rhizobacteria, 
such as Azospirillum brasilense and Bacillus megaterium, stimulate plant growth by 
solubilising phosphorus and potassium while synthesising indole-3-acetic acid (da 
Silva et al. 2022). They can significantly reduce inorganic fertiliser consumption, 
with studies reporting biomass increases and root parameter enhancements 
following their application (Hindersah et al. 2021). 

Table 2 shows the impact of rhizobacteria on strawberry development and 
productivity in soilless substrates and Table 3 shows the impact of rhizobacteria 
on the quality of strawberries.

Table 2: The impact of rhizobacteria on strawberry development and productivity in soilless 
substrates.

Impact ReferencesSpecies of rhizobacteria

Increase root length, stomatal 
conductance, leaf transpiration, 

Azospirillum brasilense Bacillus (da Silva et al. and 2022)
fluminis

CO2 concentration and nutrient 
content, fertiliser dose.

2022)al. 
treatment. SMT51Bacillus licheniformis 

Accelerate fruiting time and 

Bacillus methylotrophicus et SMT38, 
flowering and yield under saline Bacillus aryabhattai 
Increase the biomass, growth, 

SMT48 and
(Redondo-Gómez 

(Mei 

Bacillus methylotrophicus (Vicente-Hernández 

2021)

Increase the following growth 
parameters: Plant height, 
chlorophyll content, fresh and dry 
root weight.

Azospirillum sp.sp. and (Rueda et al. 

IALR619Bacillus velezensis 

Azotobacter 

2019)
Increase growth and produce 
bioactive compound against 
pathogen in vitro.

et al. 

Increase fruit yield and inhibit 
pathogen growth.

2016)

et al. 

Azospirillum (Hosseini 
stomatal conductivity and 
decrease spider mite abundant .

et al. 

sp. CC1 et al. 

2022)

affected fruit dimensions.

brasilense and Pseudomonas 
brassicacearum

Pedobacter (Morais 2019)

Produce more flower, enhance Azotobacter chroococcum, 

Rhizobacteria for Strawberry Cultivation
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Table 3: The impact of rhizobacteria on strawberry quality.

ReferencesMechanism Impact

(Hindersah et al. 

Vermicompost and 

Mixed biofertiliser: N2-fixing 
and P-solubilising bacteria

Increase total soluble 
solids (TSS)

Bacillus subtilis, Bacillus 
megaterium and 

(Kilic et al. 2023) 
biofertiliser increase 
micronutrients (Mg, Fe, 
Co)

Pseudomonas fluorescens

Fulvic acid with 
biofertiliser as 
biostimulants

Increase TSS and 
vitamin C

2023) 

Pseudomonas 

Rhizobacteria

Humic acid and 
biofertiliser increase 
nutrient availability

Increase sweetness

biocontrol disease

sweetness and 

and 

sp. MHA75

2019)

Pseudomonas 

Pedobacter 

et al. 

et al. 
2019)

Increase fruit size, 

Production IAA 
phytohormones for 

Rhizobacteria as 

Azotobacter chroococcum

Increase ascorbic 
acid and anthocyanin 
content

improve fruit size and 
flavonoid

Azospirillum brasilense et al. 2018) 

sp.Increase fruit length, 
thickness, total 
phenolic, content and 

Bacillus 

(Morais 

phenolic compounds

2020)

sp. RCA3 and 

Increase micronutrient 
uptakes

Bacillus sp. SYB101 
or combination with 

(Anuradha 

(Pii 

flavonoid compounds

Martínez-De La 

Rhizobacteria decrease Maximize juice pH, Pseudomonas florescence, (Kumar et al. 
population soil pathogen 
and increase phosphate 
availability 

et al. 2022) 

increase TSS and total 
sugar, and decrease 
acidity 

Bacillus subtilis 

fluorescens (
Cruz 

Rhizobacteria boost growth and yield and enhance fruit quality through increased 
nutrient availability and ripening regulation (Negi et al. 2021). Potassium, crucial 
for fruit quality and stress responses, influences pathogen resistance and fruit 
ripening (Singh et al. 2020). Reduced nitrogen, phosphorus, potassium and 
biofertiliser applications have significantly improved fruit quality and yield (Nisarga 
et al. 2020). Various bacteria strains from Bacillus sp. and Pseudomonas sp. are 
employed as biofertilisers to enhance fruit quality (Nam et al. 2023).

IMPACT OF RHIZOBACTERIA ON BIOTIC AND ABIOTIC STRESS

Drought Stress Alleviation

Strawberries are highly vulnerable to drought, causing physiological stress and 
reducing fruit production and quality (Murthy & Pramanick 2014). In tropical open 
field areas, drought can lead to yield loss of up to 17% (Kumar et al. 2022). Nitrogen, 
phosphorus and potassium are essential nutrients that help plants adapt to abiotic 
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stress, improve soil fertility and increase plant tolerance to environmental stresses 
(He & Dijkstra 2014). The shape and physiological functions of strawberry fruits are 
affected by water deficiency because of their depthless root systems, broad leaf 
areas and high fruit water content (Adak et al. 2018; Mozafari et al. 2018). Induced 
systemic resistance (ISR) and acquired systemic resistance (ASR) play crucial 
roles in biotic and abiotic resistance, respectively (Fig. 2). ISR enhances defense 
against pathogens, while ASR helps plants withstand environmental stresses vital 
for survival and productivity in challenging conditions.

Jasmonic acid (JA) is synthesised to respond to plant damage caused by 
pest attacks or pathogen colonisation. JA also induces a signalling pathway that 
leads to the production of ethylene hormones (Ma et al. 2020). The interaction 
between JA and ethylene activates defense-related genes, which express plant 
resistance and ISR (Ravanbakhsh et al. 2018). When a pathogen invades the 
plant, it also recognises the signalling of salicylic acid (SA) biosynthesis (Mishra 
et al. 2024). The accumulation of SA leads to the expression of pathogen-related 
genes, which secrete metabolites to enhance resistance to pathogens, resulting in 
systemic acquired resistance (Kim & Lim 2023). 

Figure 2: Mechanisms of rhizobacteria on biotic and abiotic stress through ISR and ASR.

Rhizobacteria for Strawberry Cultivation
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In response to drought stress, organisms accumulate osmolytes, including 
betaines, sugars, polyols, polyamines and proline (Ashraf & Foolad 2007; Giri 
2011). In strawberries, drought reduces chlorophyll and carotenoid pigments 
and relative water content while enhancing antioxidant enzyme activity, osmolyte 
accumulation and oxidative markers (Zahedi et al. 2023). Several genera of 
bacteria elevate osmolyte concentration, mitigate oxidative damage and bolster 
drought tolerance (Kour et al. 2022). These bacteria can break down ethylene 
precursors by secreting 1-aminocyclopropane-1-carboxylate (ACC) deaminase, 
thus enhancing plant resilience (Brunetti et al. 2021). 

For instance, Azospirillum sp. enhances root development in tomatoes 
and xylem development in Brassica competes under drought conditions (Molina-
Favero et al. 2008; Timmusk et al. 2014). Inoculation of several strains of Bacillus 
sp. and Pantoea sp. strains increases ACC deaminase production, auxin synthesis 
and phosphate-solubilising ability in strawberries (Paliwoda et al. 2022). However, 
comprehensive studies on rhizobacteria’s role in alleviating ‘strawberries’ drought 
stress are ongoing.

Rhizobacterias as Biocontrol Agents

Wet tropical climates are marked by abundant rainfall and high humidity, and 
fungal and bacterial pathogens thrive, presenting substantial risks to strawberry 
plants (Morkeliūnė et al. 2021). Disease in such conditions includes black root rot, 
stem rot, crown rot and powdery mildew with key pathogens including Verticillium 
sp., Botrytis cinerea, Colletotrichum sp. and Phytophthora sp. (Drobek et al. 
2021; Abdel-Gaied et al. 2022). Chemical pesticides can be effective but raise 
environmental and health concerns. Therefore, non-pathogenic rhizobacteria 
show promise as a substitute for chemical pesticides. 

Many rhizobacteria are effective biocontrol agents (BCAs) for crop 
protection. Despite colonising the rhizosphere, they alleviate the detrimental effects 
by controlling plant disease and triggering immune responses (Abd-El-Kareem et 
al. 2021). Directly, rhizobacteria combat soil-borne pathogens by synthesising 
antimicrobial compounds such as antibiotics, siderophores, bacteriocin and 
volatile compounds (Raaijmakers et al. 2002; Subramanian & Smith 2015; Ryu 
et al. 2005; Vlassi et al. 2020). Rhizobacteria such as B. Amyloliquefaciens inhibit 
the mycelial growth of F. solani through the secretion of lipopeptide substances 
(Yang et al. 2024). Rhizobacteria also enhance plant health by providing nutrients 
and promoting better root growth via bacterial exopolysaccharide (EPS) and 
phytohormone production. Additionally, they produce antimicrobial substances, 
competing for nutrients and space (Grover et al. 2021). Indirectly, rhizobacteria 
can synthesise microbes-to-plant signals such as Lipo-chitooligosaccharides 
(LCOs) and microbes-to-pathogen signals as volatile organic compounds (VOCs) 
to provoke and induce systemic resistance (Jiao et al. 2021). Azotobacter 
chroococcum, Azospirillum brasilense and Pseudomonas brassicacearum induces 
phytohormonal signalling (jasmonic acid and ethylene) of plants due to population 
of Tetranychus urticae by regulating the content of phenolics, flavonoids and 
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anthocyanins (Hosseini et al. 2022). Some studies have investigated the biocontrol 
mechanisms of rhizobacteria, encompassing direct and indirect approaches  
(Table 4).

Table 4: Biocontrol mechanisms of rhizobacteria on the pathogen of strawberry plants.

sdu1201
2022)et al. (Yong 

mold
sp. 

Producing fungal antibiotic sp. and et al. 

mold

Pathogen/ Diseases Species of References

Botrytis cinerea/ 

rhizobacteria

Gray Bacillus 

Mechanisms

Indirect mechanism by (Vicente-Hernández 
induction of systemic methylotrophicus et al. 2019)
resistance.

Botrytis cinerea/Gray Bacillus (de Moura 
2021)

Colletotrichum 
gloeosporioides 

Bacillus velezensis 2021)
Cg58/ 

Pantoea 

IALR619
Colletotrichum 

sp.

Antibiotic production.

crown 

compounds.mold
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CONCLUSION

Beneficial rhizobacteria are essential for enhancing strawberry growth and 
production, especially in soilless-substrate cultivation in tropical regions. They 
directly contribute to plant growth by fixing nitrogen, solubilising phosphorus and 
potassium, producing phytohormones, and synthesising EPS. They also indirectly 
alleviate harsh conditions like drought and diseases, improving strawberry yield 
and quality. With low nutrient availability in tropical soil, N2-fixing, phosphate-
solubilising and potassium-solubilising bacteria become crucial for promoting plant 
development.

Rhizobacteria function as biocontrol agents, managing pathogen growth 
in tropical regions with high disease intensity. Their diverse roles contribute to 
improving strawberry cultivation practices while decreasing dependence on 
chemical fertilisers, thus fostering environmental sustainability.

This literature review highlights the potential of various rhizobacteria to 
increase strawberry production and minimise chemical fertiliser usage in tropical 
climates. Their application proves significant in field-based and soilless cultivation, 
aiding strawberries to thrive despite drought and abiotic factors. Rhizobacteria 
offer promising prospects for sustainable strawberry cultivation in tropical regions.
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