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Highlights

• Mint green LED (530 nm) promotes biomass accumulation: Among all tested
light treatments, mint green LED significantly enhanced fresh and dry weight
accumulation in Eurycoma longifolia hairy root cultures after 10 weeks of culture.

• LED treatments maintain genetic stability: Genetic stability analysis using DAMD
and ISSR markers confirmed high genetic similarity (> 90%) across all LED
treatments, indicating that LED exposure does not induce somaclonal variation in
E. longifolia hairy root cultures.

• Spectral quality influences root morphology and development: Different LED
wavelengths affected root growth patterns and overall morphology, demonstrating
specific responses to spectral quality indicating a possible stress response or
metabolic shift.
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Abstract: Light quality significantly influences plant growth and development by interacting 
with photoreceptors, leading to reversible and irreversible outcomes. This study provides 
novel insights into the species-specific effects of light-emitting diodes (LEDs) on the 
morphological characteristics and genetic stability of Eurycoma longifolia hairy root cultures 
(ELHRCs) under different light qualities. LED treatments included white (400 nm–700 nm), 
blue (440 nm), mint green (530 nm), red (660 nm) and a combination of blue with red (1:1) 
(440 nm + 660 nm) applied for 8, 10 and 12 weeks. Morphological changes and growth were 
assessed alongside genetic stability through direct amplification of minisatellite DNA regions 
(DAMD) and inter-simple sequence repeat (ISSR) markers analysis using 12 primers. The 
results showed genetic similarity of 90.6% after 8 weeks and 100% after 10 and 12 weeks 
(DAMD) and 100%, 98.2% and 90.3% after 8, 10 and 12 weeks, respectively (ISSR) under 
all LED treatments, confirming the genetic stability of the hairy roots. Additionally, the study 
demonstrated how spectral quality influences hairy roots growth and morphology. The high 
percentage of genetic similarity highlights LEDs as a promising tool for in vitro culture of 
ELHRCs. These findings represent the first comprehensive report on the combined effects 
of LED spectral quality on growth, morphological changes and genetic stability in ELHRCs. 

Keywords: Tongkat Ali, Hairy Root Culture, Medicinal Plant, Genetic Stability

Abstrak: Kualiti cahaya secara signifikan mempengaruhi pertumbuhan dan perkembangan 
tumbuhan melalui interaksi dengan fotoreseptor, yang menghasilkan kesan boleh balik 
dan tidak boleh balik. Kajian ini memberikan perspektif baharu mengenai kesan spesifik 
spesies diod pemancar cahaya (LED) terhadap ciri morfologi dan kestabilan genetik kultur 
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akar berbulu Eurycoma longifolia (ELHRCs) di bawah pelbagai kualiti cahaya. Rawatan 
LED yang digunakan termasuk putih (400 nm–700 nm), biru (440 nm), hijau pudina 
(530 nm), merah (660 nm) dan gabungan biru dan merah (1:1) (440 nm + 660 nm) yang 
diaplikasikan selama 8, 10 dan 12 minggu. Perubahan morfologi dan pertumbuhan dinilai 
bersama kestabilan genetik menggunakan analisis penanda penguatan langsung kawasan 
DNA minisatelit (DAMD) dan jujukan antara mudah (ISSR) dengan 12 primer. Keputusan 
menunjukkan persamaan genetik sebanyak 90.6% selepas 8 minggu dan 100% selepas 10 
dan 12 minggu (DAMD), serta 100%, 98.2% dan 90.3% masing-masing selepas 8, 10 dan 
12 minggu (ISSR) di bawah semua rawatan LED, mengesahkan kestabilan genetik akar 
berbulu. Selain itu, kajian ini menunjukkan bagaimana kualiti spektrum LED mempengaruhi 
pertumbuhan dan morfologi akar berbulu. Peratusan persamaan genetik yang tinggi 
menonjolkan LED sebagai alat yang berpotensi untuk kultur in vitro ELHRCs. Penemuan 
ini merupakan laporan komprehensif pertama mengenai kesan gabungan kualiti spektrum 
LED terhadap pertumbuhan, perubahan morfologi dan kestabilan genetik dalam ELHRCs.

Kata kunci: Tongkat Ali, Kultur Akar Rerambut, Tumbuhan Ubatan, Kestabilan Genetik

INTRODUCTION

Light quality significantly influences morphogenesis, growth and differentiation 
in plant cells, tissues, and organ cultures (Araújo et al. 2021; Nery et al. 2021). 
Light-emitting diodes (LEDs) are increasingly used in in vitro tissue culture due to 
their ability to provide tailored light spectra, optimising plant growth and metabolic 
efficiency (Jung et al. 2021; Zielińska et al. 2020). Unlike traditional light sources 
such as halogen lamps and fluorescent tubes, LEDs are mercury-free, energy-
efficient and environmentally sustainable, making them ideal for plant breeding 
applications (Bachouch et al. 2021).

 LEDs are excellent artificial lighting due to their short wavelength and 
their ability to provide tailored coloured light that is efficiently absorbed by the plant 
photoreceptors (Batista et al. 2018; Chaves et al. 2020; Paradiso & Proietti 2022). 
The LED light prevents overheating of the developing material, saving energy and 
the environment (Doulos et al. 2020). LEDs also have simpler driver electronics, 
longer lifetime, reliability and lower maintenance costs (Niangoran et al. 2016; 
Bachouch et al. 2021).

The physiological and morphological responses of plants to different 
light wavelengths depend on the selective activation of photoreceptors (Coelho 
et al. 2021). For instance, blue light enhances root biomass in Astragalus 
membranaceous (Gai et al. 2022), while green light promotes root regeneration 
(Li et al. 2021). Similarly, the combination of specific wavelengths has been shown 
to influence hairy root morphology in Salvia miltiorrhiza (Chen et al. 2018). These 
findings underscore the importance of spectral composition in promoting optimal 
growth and root development in tissue culture systems.

However, somaclonal variation, which occurs during in vitro culture, can 
compromise clonal fidelity and genetic stability. Factors such as plant growth 
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regulators, subcultures and light conditions can influence genetic integrity (Boldaji 
et al. 2021). Intense or fluctuating lighting can induce oxidative stress, affecting DNA 
replication and cell division (Krishna et al. 2016; Bidabadi & Jain 2020). Molecular 
markers such as inter-simple sequence repeats (ISSR) and direct amplification of 
minisatellite DNA (DAMD) have been widely used to assess genetic variation and 
stability in tissue culture systems (Nisa et al. 2019; Orłowska 2021).

Eurycoma longifolia (Tongkat Ali), a medicinal herb widely used in 
Southeast Asia, is valued for its pharmacological properties, including antioxidant, 
anti-inflammatory, anticancer and immunomodulatory effects (Rehman et al. 2016; 
Yunos et al. 2022; Sale et al. 2023). Hairy root culture of E. longifolia offers a 
sustainable approach to producing its bioactive compounds (Nazirah et al. 2018). 
Given the importance of light quality for plant growth, this study for the first time 
aimed to evaluate the effects of different LED wavelengths white (400 nm– 
700 nm), blue (440 nm), mint green (530 nm), red (660 nm) and a combination of 
blue with red (1:1) on growth, morphology and genetic stability of E. longifolia hairy 
root cultures (ELHRCs).

MATERIAL AND METHODS

Plant Material and Growth Conditions

The ELHRCs were obtained from the Forest Research Institute Malaysia and 
maintained at the School of Biological Sciences, Universiti Sains Malaysia were 
used for this study. Murashige and Skoog (MS) basal medium with a pH of 5.8 
was used as the culture medium and autoclaved at 121°C for 15 min. The cultures 
were incubated at 22 ± 2°C in the dark on an orbital shaker (110 rpm) with 16/8 h 
light/dark photoperiod. The morphology, growth and genetic stability of ELHRCs 
were analysed using different light spectra, including white (400 nm–700 nm) 
[W], blue (440 nm) [B], red (660 nm) [R], blue plus red (1:1) (440 nm + 660 nm) 
[BR] and mint green [MG] (530 nm). The photosynthetic photon flux densities 
(PPFD) of these LED lights were determined as follows: W (44.38 µmol m–2s–1),  
R (14.24 µmol m–2s–1), B (6.40 µmol m–2s–1), BR (17.63 µmol m–2s–1) and MG 
(7.90 µmol m-2s-1). The control was represented white light. Hairy root samples 
were collected after 8, 10 and 12 weeks from each treatment.  The analyses 
were conducted for genetic similarity using directed amplification of DNA from 
minisatellite regions (DAMD) and genetic inter simple sequence repeats (ISSR) 
markers (Fig. 1).
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Figure 1: ELHRCs growing in various LED Treatments light spectra of five types of LED 
used in the experiment: (A) blue, (B) mint green, (C) white, (D) blue plus red (1:1) and  
(E) red.

Measurement of Biomass and Examination of Growth Morphology 

To measure the biomass, three bottles of ELHRCs were harvested from each 
treatment at 8 weeks, 10 weeks and 12 weeks after culture. Fresh weight was 
taken directly, and the samples were air-dried at 37°C until constant weights were 
attained for dried biomass. The growth and morphology, including hairy root colour 
and texture, were examined physically and documented with the help of a camera. 

DNA Extraction Procedure

DNA extraction was performed according to the instructions of the NucleoSpin® 
Plant II Genomic DNA Purification Kit. Crush 100 mg of fresh root samples in a cold 
mortar and pestle and then add 300 μL PL2 nuclear lysis solution and 10 μL RNase 
solution to homogenise. The mixture was placed in a sterile microcentrifuge tube 
and incubated at 65°C for 10 min after a short vortex. Then add 75 μL PL3, mix 
and incubate for 5 min on ice. To filter the crude lysate, centrifuge at 11,000 ×g for 
2 min. The DNA-containing supernatant was transferred to a new microcentrifuge 
tube containing 450 μL BC. The supernatant was discarded after centrifugation 
at 11,000 ×g for 1 min. The DNA pellet was washed three times: first with 400 μL 
PW1, centrifuged at 11,000 ×g for 1 min, then with 700 μL PW2 and finally with  
200 μL PW2 for 2 min. To elute the DNA, add 50 μL of buffer PE (65°C) and 
centrifuge at 11,000 ×g for 1 min, repeating this step twice. The isolated DNA was 
stored at –40°C.
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PCR Amplification of Genomic DNA Using DAMD – DNA Method

To determine the genetic stability of ELHRC, 12 DAMD primers were evaluated 
(Table 1). Devi et al. (2014) performed DNA amplification using the first base 
Malaysia DAMD primers. PCR amplification was performed in a 200 μL tube 
(Axygen Inc., California, USA) with a 25 μL reaction mixture, 12.5 µL GoTaq® 
Green Master Mix, 2.5 µL primers, 2 µL template DNA and 8 µL nuclease-free 
water. The PCR process was performed using the MyCycler™ Thermal Cycler (Bio-
Rad Laboratories, Inc., USA). The PCR amplification conditions were denaturation 
at 94°C for 2 min, 40 cycles at 92°C for 1 min, annealing at Tm – 5°C for 2 min, 
72°C and a final extension cycle at 72°C for 10 min.

Table 1: List of DAMD primers.

Primer Genomic sequence (3’–5′) G + C content (%) Tm (°C) Annealing temp.

URP30F GGA CAA GAA GAG GAT GTG GA 50.00 53.9 48.9

URP32F TAC ACG TCT CGA TCT ACA GG 50.00 53.0 48.0

URP38F AAG AGG CAT TCT ACC ACC AC 50.00 54.5 49.5

HBV5 GGT GTA GAG AGG GGT 60.00 49.0 45.0

HVR CCT CCT CCC TCC T 69.23 47.6 42.6

HBV3 GGT GAA GCA CAG GTG 60.00 50.00 45.0

6.2H(+) AGG AGG AGG GGA AGG 66.67 52.4 47.4

M13 GAG GGT GGC GGC TCT 73.33 57.9 52.9

M13A GAG GGT GGC GGT TCC T 68.75 57.6 52.6

HVA AGG ATG GAA AGG AGG C 56.25 51.0 46.0

HVV GGT GTA GAG AGG GGT 60.00 49.0 44.0

6_2H_t AGG AGG AGG GGA AGG 66.67 52.4 47.4

PCR Amplification of Genomic DNA Using ISSR – DNA Method

In the present study, the genetic stability of ELHRCs was analysed using 12 ISSR 
primers (Devi et al. 2014) (Table 2). PCR amplification was performed in a 200 
μL tube (Axygen Inc., California, USA) with 12.5 µL GoTaq® Green Master Mix,  
2.5 µL primers, 2 µL template DNA and 8 µL nuclease-free water. PCR was 
performed using the MyCycler™ Thermal Cycler (Bio-Rad Laboratories Inc., 
USA). PCR amplification conditions started with 3 min of denaturation at 94°C. 
Each cycle included 1 min of denaturation at 94°C, 1 min of annealing (estimated 
at Tm–5°C), 2 min of extension at 72°C and 10 min of extension at 72°C, which 
was repeated 40 times.
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Table 2: List of ISSR primers.

Primer Genomic sequence (3’–5′) G + C content (%) Tm (°C) Annealing temp.

N1 ACA CAC ACA CAC ACA CT 47.06 51.4 49.4

N2 TGT GTTG TGT GTG TGT GA 44.44 51.3 49.3

N3 GAG AGA GAG AGA GAG AYT 44.44 47.4 42.4

N4 CAC ACA CAC ACA GG 57.14 46.2 41.2

N5 CAC ACA CAC ACA AC 50.00 43.6 38.6

N6 CAC CAC CAC GC 72.73 44.7 39.7

N8 CAC ACA CAC ACA GT 50.00 44.7 39.7

N9 ACA CAC ACA CAC ACA CAG 50.00 52.9 47.9

N10 ACA CAC ACA CAC ACA CAA 44.44 52.2 47.2

U807 AGA GAG AGA GAG AGT 46.67 42.9 37.9

U810 GAG AGA GAG AGA GAG AT 47.06 45.4 40.4

U811 GAG AGA GAG AGA GAG AC 52.94 46.8 41.8

Gel Electrophoresis Analysis

Gel electrophoresis separated the PCR products. The agarose (1.5%) was heated 
in 40 mL of 1×Tris-Borate-EDTA (TBE) buffer in the microwave. It was cooled to 
room temperature and stained with 2 µL of Red-safe nucleic acid staining solution 
(iNtRON Biotechnology, Mini Gel Caster, Bio-Rad Laboratories, USA). The mixture 
solidified at room temperature for 20 min. The gel was solidified using the Wide Mini 
Sub-Cell® GT Agarose Gel Electrophoresis System from Bio Rad Laboratories, 
Inc. in the USA, with 1× TBE buffer. The wells contained Thermo Scientific Gene 
Ruler 1kb (Lithuania) and 100 bp Plus. Add 6 µL of the PCR products to each well. 
After connecting the PowerPac™ Basic Power Supply (Bio Rad Laboratories Inc., 
USA), the electrophoresis system ran at 70 V for 75 min. The UVIdoc HD5 Gel 
Imaging System was used to observe the different DNA bands after exposure to 
ultraviolet (UV) light.

Determination of Polymorphism Analysis

The migration pattern of amplified PCR products from hormone-free MS medium 
in vitro ELHRCs treated with different LEDs was evaluated by comparing the 
presence or absence of bands with the separation pattern of in vitro ELHRCs 
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cultured in the white. The identification of distinct and reproducible bands was 
done manually, assigning a score of 0 for the absence of bands and a score of 
1 for the presence of bands. The similarity index was calculated using a specific 
method developed by Harirah and Khalid (2006):

Similarity Index (SI) =
2Nxy

Nx+Ny

where, Nxy = number of monomorphic bands between the control and treatment 
groups; Nx = total number of bands in the control group and Ny = total number of 
bands in the treatment group.

Statistical Analysis

All experiments were performed in three biological replicates. The data from all 
experiments conducted were analysed using (one-way) analysis of variance 
(ANOVA) followed by Duncan’s post hoc test at p ≤ 0.05 using the Statistical 
Package for the Social Sciences (SPSS) version 28.0. The results of fresh and dry 
biomass were expressed as mean values and their standard errors (SE) using MS 
Excel software.

RESULTS AND DISCUSSION

Effects of LED Treatments on the Growth and Morphology of ELHRCs

E. longifolia hairy root cultures (ELHRCs) are exposed to LED lamps with different 
spectral for 8 weeks, 10 weeks and 12 weeks. The different LED treatments, 
namely red (R), blue (B), mint green (MG), blue plus red 1:1 (BR) and white (W) as 
a control, had a significant effect on the growth and morphological characteristics 
of ELHRCs, as shown in Fig. 2 and Table 3. 
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Table 3: E. longifolia hairy root cultures fresh and dry weights response to a different of 
LEDs treatment.

Week Light emitting diodes treatment Fresh weight (g) Dry weight (g)

8 White 2.529 ± 0.36a 0.286 ± 0.0 a

Red 1.745 ± 0.29a 0.194 ± 0.02ab

Blue 1.631 ± 0.31a 0.194 ± 0.04ab

Blue plus red (1:1) 1.729 ± 0.10a 0.176 ± 0.01b

Mint green 1.680 ± 0.33a 0.188 ± 0.04b

10 White 2.669 ± 0.26ab 0.341 ± 0.03ab

Red 1.927 ± 0.08b 0.243 ± 0.01c

Blue 2.393 ± 0.28ab 0.253 ± 0.01c

Blue plus red (1:1) 2.668 ± 0.17ab 0.261 ± 0.03bc

Mint green 3.206 ±0.40a 0.368 ± 0.04a

12 White 3.611 ± 0.25a 0.314 ± 0.01a

Red 2.778 ± 0.14a 0.292 ± 0.02a

Blue 2.639 ± 0.28a 0.303 ± 0.04a

Blue plus red (1:1) 2.270 ± 0.38a 0.255 ± 0.04a

Mint green 2.916 ± 0.84a 0.299 ± 0.07a

Notes: *Values are shown in mean ± standard error. Each week was analysed separately. Within columns, mean ± 
standard error with the same alphabet letters indicates no significant difference between means by Duncan’s Test, 
at p ≤ 0.05.

The colour of ELHRCs varied depending on the LED treatments and culture 
duration (Fig. 2). After 8 weeks of treatment, the hairy roots displayed a yellow 
colour in B light. Furthermore, under W, R, BR and MG light treatments, the hairy 
roots appear yellowish-orange in colour. After 10 weeks, the hairy roots appear 
yellow under W, B and BR light treatments and yellowish-orange in colour under 
MG light treatment. After 12 weeks, the hairy roots colour under R-light was 
orange, whereas W, B and BR lights the roots were yellow, and MG light the roots 
appeared yellowish-orange. The ELHRCs has a dark brown colour that is more 
obvious at 12 weeks in R light treatment. Therefore, the duration of light treatments 
affects the colour of E. longifolia hairy roots.

The results in Table 2 show that after 8 weeks of the experiment, the 
highest dry weight was recorded under W light, while the dry weight of hairy roots 
obtained under R, B, BR and MG lights was significantly lower, while no significant 
difference was observed in term of fresh weight (FW). After 10 weeks of culture, R 
light resulted significantly less FW compared to MG light followed by W, B and BR 
lights. The use of light of different wavelengths modified the dry weight (DW) of E. 
longifolia roots. On the other hand, no significant difference was observed in FW 
and DW after 12 weeks of treatment. 
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Despite this, FW accumulation was consistently higher under W light after 
8 and 12 weeks. However, after 10 weeks, FW under MG light was 1.2 times higher 
than under W light, and DW was 1.08 times higher under MG light compared to 
W light. These results, effect of LED treatments on the ELHRCs of fresh and dry 
weight as shown in Table 3, indicate that MG light is optimal for biomass production 
in ELHRCs after 10 weeks of culture.

These findings align with previous studies. For example, Nazirah et al. 
(2018) reported higher biomass production in E. longifolia hairy root cultures 
grown in the dark for 10 weeks. In addition, studies on other species, such as 
ginseng (Yu et al. 2005) and beetroot (Shin et al. 2003), found that red and far-red 
light produced the highest biomass. Interestingly, in ELHRCs, R light resulted in 
significantly lower biomass than MG light after 10 weeks.

However, blue light has also been reported to enhance hairy root biomass 
in other species. Gai et al. (2022) observed that blue light produced 1.4 times 
more biomass in A. membranaceus hairy roots compared to dark after 55 days. 
Similarly, Jiao et al. (2023) reported a 1.86-fold increase in biomass under blue 
light in Isatis tinctoria hairy roots cultured for 50 days. Additionally, Zhang et al. 
(2020) found that the combination of blue and red light significantly influenced the 
morphology and growth of S. miltiorrhiza hairy roots. However, Chen et al. (2018), 
the duration of light treatment can influence the colour of S. miltiorrhiza hairy 
roots. Similarly, Mukherjee et al. (2016) observed that Daucus carota hairy roots 
turned green under continuous illumination. The results of this study show that 
MG monochromatic LEDs produce higher biomass after 10 weeks of culture. This 
could be due to the mixture’s synergistic effects, which consist of light essential 
for most plant physiological functions. In addition, the ELHRCs after 12 weeks 
show no significant difference between LED treatments, might be because of the 
consumption of nutrients in the medium.

DAMD–DNA Analysis

A total of 12 DAMD primers were initially screened to analyse the genomic DNA 
extracted from ELHRCs samples. Of these, four primers M13, M13A, URP32F 
and 6_2H_t produced well-defined and reproducible banding patterns across all 
treatments (R, B, BR, MG and control W). The amplified DNA fragments ranged in 
size from 200 bp to 2,900 bp (Fig. 3A–C; Tables 4–6).

The DAMD assay aimed to examine DNA band variation, reveal the 
degree of polymorphism, and assess genetic stability of ELHRCs grown under 
different LED treatments (Fig. 1). Monomorphic bands were consistent with the 
control, while polymorphic bands showed deviations. Under all LED treatments, 
ELHRCs demonstrated high genetic stability, producing monomorphic bands with 
the selected primers (Fig. 3A–C).

Primer M13A generated the highest number of amplified DNA bands 
(12) after 8 weeks under R light, with band sizes ranging from 300 bp to  
2,500 bp. At this stage, primers M13 and 6_2H_t achieved a similarity index (SI) 
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of 1.0 in all LED treatments (Table 4). After 10 weeks, primer M13 produced the 
most amplified bands (14), ranging from 350 bp to 2000 bp, with SI 1.0 observed 
in W, B and BR treatments. Similarly, primers URP32F and 6_2H_t-maintained SI 
1.0 in all treatments (Table 5). By 12 weeks, M13 produced the highest number of 
bands (13) under B light, while primer URP32F continued to exhibit SI 1.0 across 
all treatments (Table 6).

Particularly, variations in SI were observed with some primers under 
specific conditions. After 8 weeks, primer M13A yielded SI values of 0.89 and 0.95 
for B and MG light treatments, respectively, due to the deletion of 4 and 3 bands. 
Primer URP32F showed SI values of 0.89, 0.91 and 0.91 for B, BR and MG light 
treatments, respectively, caused by one band deletions (Table 4). After 10 weeks, 
primer M13 recorded SI values of 0.96 for R and MG light treatments due to single-
band deletions, while M13A produced SI values of 0.96 for R, B and MG, reflecting 
single-band additions. BR treatment showed an SI of 0.92 due to the deletion of 
two bands (Table 5). At 12 weeks, primer M13 had SI values of 0.96 and 0.92 
for B and MG light treatments due to one added band and two deleted bands, 
respectively. Primer M13A recorded an SI of 0.95 for BR light treatment, reflecting 
the deletion of one band (Table 6).

Figure 3. Influence of different LED treatments on DAMD profiles of in vitro Eurycoma 
longifolia hairy root cultures (ELHRCs). DAMD primers (URP32F, M13, M13A, and 6_2H_t) 
were used. (A) ELHRCs at 8 weeks, (B) ELHRCs at 10 weeks and (C) ELHRCs at 12 weeks 
of treatment. 
Abbreviations: (L1) 100 bp ladder, (L2) 1kb ladder, (D) Dark, (W) White, (B) Blue, (R) Red, (BR) Blue plus Red (1:1) 
and (MG) Mint Green.
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Table 4: DAMD-DNA banding profiles of DNA samples obtained from in vitro Eurycoma 
longifolia hairy root cultures with different LED treatments at 8 weeks.

Treatment Primers Total 
number 
of bands 
in control 
(White)

Total 
number of 
bands in 
treatment

Number of 
monomorphic 

bands

Number of 
polymorphic 

bands

Length of 
amplified DNA 
fragments (bp)

SI 
index

Red M13 8 8 8 0 400–2,000 1

M13A 11 12 12 1 300–2,500 1

URP32F 6 4 5 2 400–800 1

6_2H_t 7 7 7 0 250–2,500 1

Blue M13 8 7 8 1 400–2,000 1

M13A 11 7 8 4 200–1,400 0.89

URP32F 6 3 4 3 400–800 0.89

6_2H_t 7 7 7 0 250–2,500 1

Blue plus 
red (1:1)

M13 8 8 8 0 400–2,000 1

M13A 11 5 8 4 400–2,500 1

URP32F 6 5 5 1 400–1,200 0.91

6_2H_t 7 7 7 0 250–2,500 1

Mint green M13 8 7 8 1 400–2,000 1

M13A 11 8 9 3 400–2,500 0.95

URP32F 6 5 5 1 400–1,200 0.91

6_2H_t 7 7 7 0 250–2,500 1

Total bands 128 107 116 (90.6%) 22 (17.2%)

Table 5: DAMD-DNA banding profiles of DNA samples obtained from in vitro Eurycoma 
longifolia hairy root cultures with different LED treatments at 10 weeks.

Treatment Primers Total 
number 
of bands 
in control 
(White)

Total 
number of 
bands in 
treatment

Number of 
monomorphic 

bands

Number of 
polymorphic 

bands

Length of 
amplified DNA 
fragments (bp)

SI 
index

Red M13 14 13 13 1 350–2,000 0.96

M13A 12 13 12 1 200–2,900 0.96

URP32F 7 9 8 2 400–1,400 1

6_2H_t 7 8 8 0 250–2,500 1

Blue M13 14 14 14 0 350–2,000 1

M13A 12 13 12 1 200–2,900 0.96

URP32F 7 7 7 0 400–1,300 1

6_2H_t 7 7 7 0 250–2,500 1

(Continued on next page)
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Treatment Primers Total 
number 
of bands 
in control 
(White)

Total 
number of 
bands in 
treatment

Number of 
monomorphic 

bands

Number of 
polymorphic 

bands

Length of 
amplified DNA 
fragments (bp)

SI 
index

Blue plus red 
(1:1)

M13 14 14 14 0 350–2,000 1

M13A 12 14 12 2 200–2,900 0.92

URP32F 7 8 8 1 400–1,400 1

6_2H_t 7 7 7 0 250–2,500 1

Mint green M13 14 13 13 1 350–2,000 0.96

M13A 12 13 12 1 200–2,900 0.96

URP32F 7 9 8 1 400–1,400 1

6_2H_t 7 8 8 1 250–2,500 1

Total bands 160 170 163 (100%) 12 (7.5%)

Table 6: DAMD-DNA banding profiles of DNA samples obtained from in vitro Eurycoma 
longifolia hairy root cultures with different LED treatments at 12 weeks.

Treatment Primers Total 
number 
of bands 
in control 
(White)

Total 
number of 
bands in 
treatment

Number of 
monomorphic 

bands

Number of 
polymorphic 

bands

Length of 
amplified DNA 
fragments (bp)

SI 
index

Red M13 13 13 13 0 300–1,800 1

M13A 11 11 11 0 200–2,900 1

URP32F 4 7 6 3 200–1,200 1

6_2H_t 7 7 7 0 250–2,500 1

Blue M13 13 14 13 1 300–1,800 0.96

M13A 11 11 11 0 200–2,900 1

URP32F 4 6 6 2 400–1,200 1

6_2H_t 7 7 7 0 250–2,500 1

Blue plus red 
(1:1)

M13 13 13 13 0 400–1,800 1

M13A 11 10 10 1 200–2,900 0.95

URP32F 4 6 6 2 400–1,200 1

6_2H_t 7 7 7 0 250–2,500 1

Mint green M13 13 11 11 2 280–1,800 0.92

M13A 11 13 13 2 200–2,900 1

URP32F 4 4 4 0 400–800 1

6_2H_t 7 8 7 1 250–2,500 1

Total bands 140 148 145 (100%) 14 (10%)

Table 5.  (continued)



Mahmoud Ali Khalaf Abushattal et al.

192

ISSR-DNA Analysis

For ISSR analysis, 4 primers N3, N4, U810 and N6 were selected from 12 primers 
based on their ability to generate clear and reproducible banding patterns under 
all treatments (R, B, BR, MG and W). The amplified DNA fragments ranged in size 
from 200 bp to 2,900 bp (Fig. 4(A–C); Tables 7–9).

Figure 4. Influence of different LED treatments on ISSR profiles of in vitro Eurycoma 
longifolia hairy root cultures (ELHRCs). ISSR primers (N3, N4, U810, and N6) were used. (A) 
ELHRCs at 8 weeks, (B) ELHRCs at 10 weeks and (C) ELHRCs at 12 weeks of treatment. 
Abbreviations: (L1) 100 bp ladder, (L2) 1kb ladder, (D) Dark, (W) White, (B) Blue, (R) Red, 
(BR) Blue plus Red (1:1) and (MG) Mint Green.

Table 7: ISSR-DNA banding profiles of DNA samples obtained from in vitro Eurycoma 
longifolia hairy root cultures with different LED treatments at 8 weeks.

Treatment Primers Total number 
of bands 
in control 
(White)

Total 
number of 
bands in 
treatment

Number of 
monomorphic 

bands

Number of 
polymorphic 

bands

Length of 
amplified DNA 
fragments (bp)

SI 
index

Red N3 2 2 2 0 400–650 1

N4 4 4 4 0 300–500 1

U810 3 3 3 0 550–950 1

N6 10 10 10 0 300–2,900 1

Blue N3 2 2 2 0 400–650 1

N4 4 5 5 1 300–800 1

U810 3 3 3 0 550–950 1

N6 10 9 9 1 300–2,900 0.95

(Continued on next page)
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Treatment Primers Total number 
of bands 
in control 
(White)

Total 
number of 
bands in 
treatment

Number of 
monomorphic 

bands

Number of 
polymorphic 

bands

Length of 
amplified DNA 
fragments (bp)

SI 
index

Blue plus red 
(1:1)

N3 2 2 2 0 400–650 1

N4 4 5 5 1 300–800 1

U810 3 3 3 0 550–950 1

N6 10 10 10 0 300–2,900 1

Mint green N3 2 2 2 0 500–850 1

N4 4 5 5 1 300–800 1

U810 3 4 4 1 550–950 1

N6 10 9 9 1 550–1,800 0.95

Total bands 76 78 78(100%) 6(7.89%)

Table 8: ISSR-DNA banding profiles of DNA samples obtained from in vitro Eurycoma 
longifolia hairy root cultures with different LED treatments at 10 weeks.

Treatment Primers Total number 
of bands 
in control 
(White)

Total number 
of bands in 
treatment

Number of 
monomorphic 

bands

Number of 
polymorphic 

bands

Length of 
amplified DNA 

fragments 
(bp)

SI 
index

Red N3 2 2 2 0 400–600 1

N4 13 13 13 0 300-1,600 1

U810 5 1 1 4 550–600 0.33

N6 8 9 9 1 300–1,400 1

Blue N3 2 2 2 0 400–600 1

N4 13 13 13 0 300–1,600 1

U810 5 5 5 0 350–650 1

N6 8 9 9 1 300–1,400 1

Blue plus 
red (1:1)

N3 2 3 3 1 400–600 1

N4 13 11 11 2 300–1,400 0.92

U810 5 1 1 4 550–600 0.33

N6 8 11 11 3 300–1,800 1

Mint green N3 2 3 3 1 400–600 1

N4 13 12 12 1 300–1,600 0.96

U810 5 4 4 1 350–600 0.89

N6 8 11 11 3 300–1,800 1

Total bands 112 110 110 (98.2%) 22 (19.6%)

Table 7.  (continued)
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Table 9: ISSR-DNA banding profiles of DNA samples obtained from in vitro Eurycoma 
longifolia hairy root cultures with different LED treatments at 12 weeks.

Treatment Primers Total number 
of bands 
in control 
(White)

Total 
number of 
bands in 
treatment

Number of 
monomorphic 

bands

Number of 
polymorphic 

bands

Length of 
amplified DNA 

fragments 
(bp)

SI 
index

Red N3 11 10 10 1 200–1,100 0.95

N4 5 8 5 3 250–1,100 0.77

U810 2 2 2 0 500–800 1

N6 13 11 11 2 200–2,900 0.92

Blue N3 11 11 11 0 200–1,100 1

N4 5 5 5 0 300–800 1

U810 2 2 2 0 500–800 1

N6 13 13 13 0 200–1,400 1

Blue plus 
red (1:1)

N3 11 8 8 3 400–1,100 0.84

N4 5 7 5 2 300–900 0.83

U810 2 1 2 1 500–800 1

N6 13 11 11 2 250–2,000 0.92

Mint green N3 11 8 8 3 400–1,100 0.84

N4 5 6 5 1 300–900 0.91

U810 2 2 2 0 500–800 1

N6 13 13 13 0 250–2,000 1

Total bands 124 118 113 (91.12%) 18 (14.5%)

ISSR analysis further evaluated DNA band variation, focusing on the degree of 
polymorphism and genetic stability of ELHRCs under different LED treatments (Fig. 
1). Monomorphic bands were consistent with the control lane, while polymorphic 
bands deviated. High genetic stability was observed across all treatments, with 
monomorphic bands produced by the 4 primers (Fig. 4A–C).

Primer N6 generated the highest number of amplified bands (10) after 8 
weeks, ranging from 300 bp to 2,900 bp, with an SI of 1.0. Other primers (N3, N4 
and U810) also achieved SI 1.0 in all treatments (Table 7). After 10 weeks, primer 
N4 produced the highest number of bands (13), ranging from 350 bp to 2,000 bp, 
while primers N3 and N6 maintained SI 1.0 across all LED treatments. Primer N4 
achieved SI 1.0 in R and B light treatments (Table 8). After 12 weeks, primer N6 
again produced the highest number of bands (13), while primer U810 maintained 
SI 1.0 across all LED treatments (Table 9).

However, variations in SI values were observed under specific conditions. 
After 8 weeks, primer N4 showed SI values of 0.95 for B and MG treatments, 
reflecting the deletion of one band (Table 7). At 10 weeks, primer U810 displayed 
SI values of 0.33 for R and BR light treatments and 0.89 for MG light, resulting 
from the deletion of four, four and one bands, respectively. Primer N4 recorded SI 
values of 0.92 and 0.96 for BR and MG light treatments, respectively, due to band 
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deletions (Table 8). After 12 weeks, primer N3 showed SI values of 0.95, 0.84 
and 0.84 for R, BR and MG light treatments, reflecting the deletion of one, three 
and three bands, respectively. Primer N4 recorded SI values of 0.77, 0.83 and 
0.91 for R, BR and MG light treatments, resulting from deletions of three, two and 
one bands, respectively. Primer N6 achieved SI values of 0.92 for R and BR light 
treatments due to the deletion of two bands each (Table 9).

Genetic stability or variation in response to environmental factors can be 
effectively assessed using molecular markers such as RAPD, ISSR, DAMD, SSR 
and minisatellite DNA. SSR and microsatellite markers have been isolated and 
characterised in natural populations of E. longifolia (Tnah et al. 2011; Lee et al. 
2018), while RAPD markers have been used to characterise and compare these 
populations (Razi et al. 2013). These foundational studies support the application 
of molecular markers like ISSR and DAMD in assessing the genetic stability of 
in vitro E. longifolia hairy root cultures (ELHRCs). In this study, ISSR and DAMD 
markers were employed to evaluate genetic stability in ELHRCs subjected to 
different LED treatments after 8, 10 and 12 weeks.

Various studies have demonstrated the effectiveness of ISSR, DAMD 
and RAPD markers in detecting genetic variation. For instance, Lamare and 
Rao (2015) evaluated genetic diversity in Musa acuminata cultivars using these 
markers, reporting an overall polymorphism of 90.06%. In contrast, the ELHRCs 
in our study exhibited significantly lower polymorphism levels: 17.2%, 7.5% and 
10% for DAMD primers, and 7.9%, 19.6% and 14.5% for ISSR primers after 8, 10 
and 12 weeks, respectively. According to Zoghlami et al. (2012), genotypes with 
more than 90% genetic similarity are considered genetically stable. Our results 
indicate that LED-treated ELHRCs maintained genetic stability, with SI exceeding 
90% across all treatments (Tables 4–9).

Tissue-engineered plants are susceptible to molecular changes due 
to various factors, including plant growth regulators (PGRs), chemicals in the 
culture medium and light spectra. These changes may lead to genetic mutations, 
impacting plant chemistry, structure and cellular composition (Long et al. 2022). 
For ELHRCs, such morphological variations could potentially result from epigenetic 
modifications. Therefore, molecular testing to confirm genetic stability is essential 
to develop advanced methods for detecting somaclonal variations. Identifying and 
managing somaclonal variations are critical for ensuring the genetic stability of 
micropropagated plants (Leva & Petruccelli 2012).

Plant morphogenesis, including processes such as root elongation, leaf 
expansion and metabolic changes, depends on the availability and quality of light 
(Paradiso & Proietti 2022). Studies by Olle and Viršile (2013), Mills and Dunn 
(2016) and Monostori et al. (2018) highlight the influence of photosynthetically 
active radiation (PAR) on plant growth under controlled conditions. LEDs have 
emerged as an efficient light source, enhancing plant cell properties (Gnasekaran 
et al. 2022). Park et al. (2010) suggested that LEDs minimise somaclonal 
variations during mass propagation, offering growth characteristics comparable 
to fluorescent lights. Thus, LEDs constructed from visible light wavelengths are a 
safe and economical option for culturing ELHRCs.
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Specific wavelengths, such as red and blue light, are known to improve 
plant productivity (Olle & Viršile 2013; Borowski et al. 2015; Park & Runkle 2018). 
For instance, light directly influences gene expression at various developmental 
stages, as shown by Torres et al. (2019). Such genetic-level changes may explain 
variations in photosynthetic parameters and plant yields (Cioć et al. 2018). In this 
study, ELHRCs exposed to MG light exhibited higher biomass yields, while all LED 
treatments influenced distinct morphological traits. Gene expression or epigenetic 
analyses could further elucidate the mechanisms underlying these changes.

The reliability of molecular analyses also plays a role in assessing 
genetic stability. Parab et al. (2021) suggested that error dynamics during PCR 
amplification can reduce variability in SI values. For ELHRCs, the low percentages 
of SI were observed for the U810 primer in R and BR after 10 weeks, possibly due 
to the same explanation as in Table 7. However, genetic stability was high, 90.6% 
after 8 weeks and 100% after 10 and 12 weeks for DAMD primers, and 100%, 
98.2% and 90.3% after 8 weeks, 10 weeks and 12 weeks, respectively, for ISSR 
primers as shown in Table 10. 

These findings confirm the genetic stability of ELHRCs during LED treatment 
and align with studies on other plant species. For example, Purayil et al. (2018) 
analysed date palm cultivars using ISSR and DAMD markers, reporting 85.45% 
polymorphism. Similarly, genetic differences in Douglas fir, Sugi and melon have 
been analysed using ISSR and RAPD markers, showing high variation (Daryono 
et al. 2019). Conversely, studies on Platanus acerifolia reported genetic stability in 
micropropagated plants (Huang et al. 2009; Matsumoto et al. 2013). Overall, the 
results demonstrate that potential of LED lights as a viable and efficient tool for 
enhancing plant growth and maintaining genetic stability in in vitro ELHRCs.

Table 10: Similarity percentages are based on DAMD-DNA banding profiles of DNA 
samples obtained from in vitro Eurycoma longifolia hairy root cultures (ELHRCs) on week 
8, 10 and 12.

Week of 
treatment

Molecular 
marker

Total no. 
of bands in 

control

No. of 
monomorphic 

bands

No. of 
polymorphic 

bands

Monomorphism 
(%)

Polymorphism
(%)

8 DAMD 128 108 22 90.6 17.2

ISSR 76 78 6 100.0 7.89

10 DAMD 160 163 12 100.0 7.5

ISSR 112 110 2 98.2 19.6

12 DAMD 140 145 14 100.0 10.0

ISSR 124 112 18 91.1 14.5
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CONCLUSION

The results of this study showed that light quality, defined by specific wavelengths 
emitted by LEDs, has a significant effect on the growth, morphological 
characteristics, and maintenance of the genetic stability of Eurycoma longifolia 
hairy root cultures (ELHRCs). After 10 weeks of culture, hairy roots under MG light 
produce the highest fresh and dry biomass. This was supported by a high genetic 
similarity between the LED-treated cultures as evidenced by DAMD and ISSR 
markers analyses after 8, 10, and 12 weeks of treatment. In addition, ELHRCs 
under all LED treatments had an average genetic similarity index above 90%, 
indicating genetic stability.
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