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Abstract: Silver nanoparticles (AgNPs) have been widely applied as antimicrobial materials. In 

this work, a new fabrication method of AgNPs has been proposed through a combination of tea 

seed saponin extraction as a non-ionic biological surfactant and cetyltrimethylammonium chloride 

(CTAC) as a co-surfactant. The morphology and optical properties of as-prepared AgNPs were 

analyzed by SEM and UV-vis absorbance measurement, respectively. The results indicate that 

AgNPs obtained high homogeneous particle sizes with a mean diameter of 44.5 ± 3.8 nm. The 

optical property of AgNPs was exhibited through a UV-vis absorbance spectrum of ~420 nm. In 

addition, the antibacterial behavior of E. coli (ATCC 25922) was increased according to the 

AgNPs concentration. The diameter of inhibition zones was 12, 14, and 16 mm under AgNPs 

concentrations of 0.8, 8, and 80 ppm, respectively. Our initial trial treatment of AgNPs in young 

broccoli (Brassica oleracea) exhibited promising potential for plant protection in agricultural 

applications. 
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INTRODUCTION 

 

Silver nanoparticles (AgNPs) have emerged as antibacterial materials that are less toxic to 

humans and widely applied in various fields such as food security, biosensors, diagnostics and 

therapy quality, and crop protection (Husain et al., 2023; Rasheed et al., 2023). In agriculture, 

several approach-based AgNPs have been designed and developed for the diagnosis and 

treatment of crop diseases (Khan et al., 2023a). It has been reported that AgNPs can positively 

enhance the growth and development of plants, referring to physiological, biochemical, and 

molecular pathways (Khan et al., 2023b). For example, Krishnrraj and coworkers (2010) have 

provided an initial investigation on the effects of AgNPs on the biosynthesis of important 

metabolites such as carbohydrates and proteins (Krishnaraj et al., 2010). AgNPs can take part in 

the reduction of catalase and peroxidase activities in germination, promoting germination and 

seedling growth, and inducing plant growth (Hemalatha et al., 2024). AgNPs also have been 

proposed for use as nano-fungicides against early blight in tomato plants. The treated AgNPs 

tomato crops obtained rapid enhancement in plant height (30%), number of leaves, weight (45%), 

and dry weight (40%) compared to untreated plants (Ansari et al., 2023). The emerging potential 

application of AgNPs requires updating research on advanced methods for synthesizing AgNPs 

with low cost, eco-friendliness, and high efficiency. AgNPs can be fabricated by various methods 

including “top-down” and “bottom-up”. The green-synthesis or bio-synthesis methods that utilize 

biological materials such as plant extraction or compounds and microorganisms have been 

increasing interest due to their match sustainable development and low impact on the 

environment (Ivanov et al., 2023). Phytochemicals and secondary metabolism in plant extraction 

such as phenolic acid and flavonoids have the ability to convert Ag+ to Ag0 in order to form AgNPs 

(Liaqat et al., 2022).  

Tea seed powder of Camellia oleifera has been considered a byproduct remaining residue 

after extraction of oil and contains a certain saponin substance. The conventional usage of tea 

tree saponin powder is a natural source of organic fertilizer without taking advantage of saponin 

contained as abundant low-cost herbal materials. Saponin in Camellia oleifera has been 

investigated to work as a biological non-ionic surfactant and has the capacity of foaming, 

emulsifying, dispersing, wetting, anti-cancer, anti-inflammatory, and antibacterial activities 

(Schreiner et al., 2022; Yu et al., 2023). In this connection, we have proposed to use Camellia 

oleifera tea seed saponin for the fabrication of AgNPs by merging both biological and chemical 

approaches. In this study, new fabrication methods of AgNPs have been proposed through a 

combination of tea seed saponin extraction (Camellia oleifera) as a biological non-ionic surfactant 
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with a cationic surfactant as co-surfactant. The strategies using Camellia oleifera tea seed 

saponin involve co-reducing and co-stabilizing agents to reduce the use of synthetic chemical 

reagents and contribute to the sustainable development of the resources.  As-prepared AgNPs 

exhibit antibacterial activity and initial potential for application in agriculture.  

 

MATERIALS AND METHODS 

 

Materials  

 

Silver nitrate (AgNO3, 99%, Sigma-Aldrich), cetyltrimethylammonium chloride (CTAC, 99%, 

Daejung), L-ascorbic acid (Xilong), ammonium hydroxide (NH4OH, 25-28 %, Daejung), tea seed 

saponin powder (30% saponin, China), and Mueller Hinton Agar (MHA, Himedia) were used 

without further purification. 

 

Fabrication of Silver Nanoparticles 

 

Camellia oleifera tea seed saponin was first extracted by solid-liquid extraction according to a 

previous report, with modifications for optimization (Yu & He 2018). Briefly, a defined amount of 

commercial tea seed powder (containing 15% saponins) was mixed with distilled water at a solid-

to-liquid ratio of 1:6. The mixture was incubated at 80 °C with continuous stirring for 6 hours. The 

extract was subsequently separated by centrifugation at 5,000 rpm for 5 minutes and filtered 

through filter paper to obtain the final liquid extract. 

Then, three different mixtures (total of 1.2 g) of saponin-to-CTAC ratios were prepared as 

series 1:0 (1.2 g/ 0 g), 7:3 (0.84 g/ 0.36g), 1:1 (0,6 g/ 0,6 g), and 3:7 (0.36 g/ 0.84g). Each mixture 

was dissolved in 30 mL of water by stirring for 5 min. The mixture of AgNO3 (0.074 M) and NH4OH 

(0.1M) in water was slowly added to the co-surfactants solution and kept stirring for 10 min. Then 

15 mL of L-ascorbic acid (0.4 M) in water was added. The reaction solution was heated to 70 ℃ 

with a rate of 3-4℃/min under vigorous stirring for 1.5 hours.  

 

Antibacterial Activity  

 

Antibacterial activity was performed in E.coli (ATCC 25922) using two methodologies. Regarding 

the first method, AgNPs were mixed with a bacterial suspension and then spread to culture on 

agar plates to assess bacterial growth. The second method was the disk diffusion approach 



5 

 

(Cunha et al., 2016). The AgNPs amount of 20 µL of series concentration of  0.08, 0.8, 8, 80, and 

800 ppm was used in both methods. The positive control was performed using ciprofloxacin (5µg). 

In the disk diffusion approach, a sterile cotton swab was used to spread bacteria at a density 

equivalent to 107 CFU/mL on a petri plate (Mueller-Hinton medium). Paper discs impregnated with 

20 µL of AgNPs solutions were placed on the as-cultured plate, then incubated at 37°C for 24 

hours.The antibacterial activity of AgNPs was obtained by measuring the diameter of the inhibition 

zone around the paper disc. In addition, AgNPs solutions with different concentrations were also 

incubated with the bacteria (107 CFU/mL) and then spread on the petri plate to obtain the growth 

behavior.  

 

Characterization 

 

The morphology of AgNPs was obtained by scanning electron microscopy (SEM, JEOL JSM-

7500F) and transmission electron microscopy (TEM, HITACHI H-710). Particle size and zeta (ξ) 

potential were also analyzed by DLS (ZetaPALS, Brookhaven Instruments Co., USA) and 

Digimizer software. Optical properties were obtained by UV-vis spectroscopy. The bacterial 

density was supported by automated cell count (LUNA-II, Logos Biosystem).  

 

RESULTS 

 

The particle sizes of AgNPs synthesized using different saponin-to-CTAC ratios (1:0, 7:3, 1:1, 

and 3:7) were 82.2 ± 2.5, 122.8 ± 5.2, 44.5 ± 3.8, and 48.5 ±1.5 nm, respectively. As-prepared 

AgNPs at ratios of 1:1 and 3:7 exhibited relatively small particle sizes, ranging from 40.5 to 

48.5 nm, which were significantly smaller compared to those synthesized at ratios of 1:0 and 7:3 

. Particularly, saponin-to-CTAC ratios of 1:0 performed an almost neutral charge of -2.3 mV. The 

ξ-potential was altered to increase proportionally with CTAC concentrations. At a 1:0 ratio, the 

AgNPs displayed an almost neutral charge (–1.59 ± 2.98 mV), which progressively increased to 

18.11 ± 1.63 mV (7:3), 30.63 ± 1.29 mV (1:1), and 44,66 ± 1.96 mV (3:7). It was observed that the 

ξ-potential measurements also revealed notable differences among the formulations, with the 

charge surface increasing correlation with the amount of CTAC, indicating the integration and 

combination of the two surfactants. Based on the results, AgNPs synthesized at the 1:1 saponin-

to-CTAB ratio were selected for subsequent experiments due to their optimal particle size 44.5 ± 

3.8 nm (Table 1) and high stability (ξ-potential of about 30 mV). Fig. 1 shows the histogram 

diagram of particle size distribution with a mean diameter of 44.5 ± 3.8 nm. Fig. 2 displays the 
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digital, SEM, and TEM images of as-prepared AgNPs. AgNPs were well suspended in water with 

a clear yellow as the typical color of silver nanoparticles. The UV-vis spectra were exhibited at 

~420 nm (Fig. 3). In this work, the formulation of AgNPs through a reduction reaction induced by 

glucose as a reducing agent, whereas synergist co-surfactant of saponin extraction solution and 

synthetic surfactant allows the stability of AgNPs. The combination of a bio-surfactant and an ionic 

surfactant enhances thermodynamic properties, surface tension, and surface distribution 

depending on the properties of the ionic surfactant, such as alkyl chain length and surfactant 

ratios (Bagheri & Khalili, 2017).  

 

Table 1. Particle size distribution of AgNPs 

No. Diameter (nm) Frequency (%) 

1 37-40 17 

2 41-44 38 

3 45-48 32 

4 49-52 10 

5 53-54 3 

Min: 37.5 nm Max: 54.5 nm 

 

 

Figure 1: Particle size histogram of AgNPs. 
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Figure 2: (a) Digital images and (b) SEM of AgNPs. The inset image is TEM of AgNPs. 

 

Figure 3: UV-vis absorbance spectrum of AgNPs suspension in water. The visual image shows 

the typical bright yellow color of AgNPs solution. 

 

As-prepared AgNPs were used to demonstrated antibacterial acitivity at concentrations of 80, 8, 

0.8, and 0.08 ppm were used to evaluate antibacterial activity. The AgNPs inhibited E.coli in 

assess bacteria growth method at a minimum effective concentration of 0.08 ppm (Fig. 4a), which 

was notably more potent compared to disk diffusion assays, where the minimum inhibitory 

concentration was observed at 0.8 ppm (Fig. 4b). As shown in Fig. 4b, E. Coli has been 

(a) (b) 
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successfully inhibited at the AgNPs concentration of 80, 8, and 0.8 ppm. It was obtained that the 

increase in AgNPs concentrations leads to an increase in antibacterial activities. The diameter of 

the inhibition zone was 12 ± 0.5, 14 ± 0.3, and 16 ± 0.6 mm according with the AgNPs 

concentration of 0.8, 8, and 80 ppm. An initial trial of AgNPs suspension treatment in young 

broccoli (Brassica oleracea) was carried out to test whether as-prepared AgNPs damage plants 

as well as plant protection. AgNPs suspension of 0.8 ppm was watering both sides of the leaves 

for 14 days (frequency 2 times/week). The result shows that the as-prepared AgNPs did not 

damage plants. After 2 weeks, the plants grew and developed well, the leaves were smooth green 

and not burnt and no diseases appeared (Fig. 4c). Initial results indicate the potential application 

of as-prepared AgNPs in the formulation and development of products for plant protection. 

However, further studies should be carried out on various plant species as well as different period 

stages of plant growth. The assessment of environmental impact, clinical and sub-clinical studies 

of AgNPs also need to be carefully studied together with its strategies design and applications.  
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Figure 4: (a) Anti-bacterial behavior of as-prepared AgNPs against E. coli ATCC 25922 as assessed 

by bacterial growth with minimum inhibitor at 0.08 ppm. (b) diameter of the inhibition zone upon 

different concentrations of AgNPs, with minimum inhibitor at 0.8 ppm. (c) young broccoli (Brassica 

oleracea) treatment with as-prepared AgNPs showing growth and development of plants with no leaf 

burn and no phytotoxicity. 
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DISCUSSION 

 

The hydrophilic functional groups surrounding surfactant molecules help to stabilize the colloidal 

particle structure (Ebrahiminezhad et al., 2017). The role of surfactants of bioactive substances 

such as saponins and glycosides has proved not only positive in the formation of well-defined 

structures of particles (Mikhailova, 2020) but also has a capacity of antibacterial, anti-

inflammatory, and antioxidant (Khodeer et al., 2023; Shoaib et al., 2024). Camellia oleifera mainly 

contains sapogenins, saccharides, and organic acids. Saponin has the ability of anti-bacterial, 

anti-inflammatory, and anti-oxidant (Dong et al., 2020; Khan et al., 2022; Singh et al., 2024). 

Evaluation of the surface activity and critical micelle concentration (CMC) forming ability of 

saponin showed that when esterified, tea saponin ester had significantly better surface activity. 

At the same time, the foaming ability, stability, and emulsifying ability of saponin compared with 

other surfactants (such as non-ionic decyl glucoside, amphoteric cocoamido propyl hydroxy 

sulfobetaine, and anionic ammonium laureth sulfate) showed that the foaming ability of tea 

residue saponin was weaker than that of ionic surfactants but significantly better than that of other 

surfactants. Therefore, saponin can be applied in food science to replace synthetic chemical 

surfactants, contributing to sustainable development resources (Singh et al., 2024; Zhang et al., 

2023). 

Currently, the exact antibacterial properties of AgNPs are still unclear. However, several 

of the hypotheses AgNPs mode of action have been proposed (Yin et al., 2020a). AgNPs could 

release Ag+ that can adhere to penetrate the membrane and cytoplasm of bacterial cells through 

electrostatic attraction and affinity with other biomolecules, increasing permeability and causing 

the disruption of the bacterial envelope (More et al., 2023; Salleh et al., 2020). In addition, AgNPs 

and other related substances such as Ag+ and  ROS from AgNPs have the ability to intercalate 

DNA to disrupt DNA replication or they can even directly destroy bacterial cells. In some cases, 

AgNPs may accumulate in the cell wall and cause membrane denaturation, leading to penetration 

and description of cell wall structure or cell lysis (Yin et al., 2020b). AgNPs can also disrupt 

bacterial cell signaling pathways, which can lead to apoptosis and inhibit bacterial cell proliferation 

(Abdelgadir et al., 2024). Therefore, the implementation of fabrication and application of AgNPs 

for the prevention and treatment of pathogens has been a concern in many fields, including 

agriculture for crop protection. The antibacterial behavior of AgNPs depends on the size, shape, 

surface, and physical and chemical properties that allow AgNPs can interact with microbial cells 
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(Menichetti et al., 2023). AgNPs have been proven to have a high potential for application in 

agriculture against insects and pathogens in crops. 

 

CONCLUSION 

 

In this work, the combination of natural surfactant and chemical co-surfactant has been successful 

in the fabrication of AgNPs that can be beneficial in the design and implementation of antibacterial 

applications through various modes of action. The strategies of using tea seed saponin are as co-

reducing and co-stabilizing agents to certainly reduce the use of chemical substances, and open 

the way to contribute to sustainable development.  
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