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HIGHLIGHTS

	z The study identified November as the peak fishing season for 
Indian mackerel, with the highest catch per unit effort (220 kg 
per trip). This peak season is supported by stable salinity, heavy 
rainfall and upwelling currents that enhance nutrient availability 
and reproduction.

	z The results showed that salinity and ocean currents are the 
most influential oceanographic factors, contributing 16% and 
14%, respectively, to catch productivity. These conditions play a 
vital role in determining the distribution and abundance of Indian 
mackerel.

	z The application of an Artificial Neural Network (ANN) model 
demonstrated high accuracy with only a 1.12% error rate in 
predicting potential fishing zones. By integrating the Fishing Season 
Index (FSI) and ANN.
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Abstract: Indian mackerel (Rastrelliger spp.) is a species with high catch volumes, 
amounting to approximately 451.750 tonnes over five years. This substantial yield holds 
significant potential for local communities, making sustainable utilisation crucial. This 
study focuses on the fishing season of Indian mackerel (Rastrelliger spp.) and the 
development of a habitat suitability model in the waters of the western of Banda Sea, 
Indonesia. The Fishing Season Index (FSI) method identified November as the peak 
fishing season, with the highest CPUE recorded at 220 kg trip-1. During this period, 
stable salinity levels were observed, which supported the reproductive processes of 
Indian mackerel. Additionally, high rainfall and strong winds facilitated local upwelling, 
influencing currents and bringing nutrients to the surface, which were consumed by 
mackerel larvae. The ANN (Artificial Neural Network) models used to estimate potential 
fishing zones for Indian mackerel demonstrated high accuracy, with an error rate of 
just 1.12%. The analysis revealed that salinity and currents were the most influential 
environmental parameters, contributing 16% and 14% to catch success during the peak 
fishing season with salinity levels at 34.2 psu and current velocity at 3.29 cm s-1. The 
implementation of this model in analysing Indian mackerel habitats and their relationship 
with environmental factors supports data and technology-driven fisheries management. 
This study also introduces a novel integration of the Fishing Season Index (FSI) method 
and ANN modelling to simultaneously identify peak fishing seasons and predict potential 
fishing zones based on dynamic oceanographic parameters. The application of machine 
learning in this model enables the identification of non-linear relationships between 
environmental variables and fish distribution with high accuracy, representing a 
significant advancement in predictive habitat modelling for Indian mackerel in Indonesian 
waters. This approach contributes to sustainable fisheries resource management and 
aligns with the achievement of SDG 14 in Indonesia.
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Oceanographic Condition
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Abstrak: Ikan kembung (Rastrelliger spp.) merupakan spesies dengan jumlah tangkapan 
yang tinggi iaitu sekitar 451.750 tan dalam tempoh lima tahun. Jumlah ini berpotensi 
besar untuk masyarakat setempat, menjadikan penggunaan yang mampan sangat penting. 
Kajian ini menumpukan kepada musim penangkapan ikan kembung (Rastrelliger spp.) 
dan pembangunan model kesesuaian habitat di perairan barat Laut Banda, Indonesia. 
Kaedah Indeks Musim Penangkapan (Fishing Season Index/FSI) mengenal pasti bulan 
November sebagai musim puncak penangkapan dengan nilai CPUE tertinggi sebanyak 220 
kg trip-1. Pada tempoh tersebut, paras saliniti yang stabil telah diperhatikan, menyokong 
proses pembiakan ikan kembung. Selain itu, hujan lebat dan angin kencang membolehkan 
berlakunya fenomena “upwelling” tempatan yang mempengaruhi arus dan membawa 
nutrien ke permukaan laut untuk dimakan oleh larva ikan kembung. Model ANN (Artificial 
Neural Network) yang digunakan untuk menganggar zon penangkapan ikan kembung 
menunjukkan ketepatan yang tinggi dengan kadar ralat hanya 1.12%. Analisis mendapati 
saliniti dan arus merupakan parameter persekitaran yang paling mempengaruhi 
kejayaan tangkapan menyumbang masing-masing 16% dan 14% semasa musim puncak 
dengan paras saliniti pada 34.2 psu dan kelajuan arus pada 3.29 cm s-1. Pelaksanaan 
model ini dalam menganalisis habitat ikan kembung dan hubungannya dengan faktor 
persekitaran menyokong pengurusan perikanan berasaskan data dan teknologi. Kajian 
ini juga memperkenalkan integrasi baru kaedah Indeks Musim Memancing (FSI) dan 
pemodelan ANN untuk mengenal pasti musim penangkapan kemuncak secara serentak 
dan meramalkan zon penangkapan ikan yang berpotensi berdasarkan parameter 
oseanografi dinamik. Aplikasi pembelajaran mesin dalam model ini membolehkan 
pengenalpastian hubungan bukan linear antara pembolehubah persekitaran dan taburan 
ikan dengan ketepatan yang tinggi, mewakili kemajuan yang ketara dalam pemodelan 
habitat ramalan untuk ikan kembung di perairan Indonesia. Pendekatan ini menyumbang 
kepada pengurusan sumber perikanan yang mampan dan sejajar dengan pencapaian 
SDG 14 di Indonesia. 

Kata Kunci: Ikan Kembung, Algoritma ANN, Pemodelan Spasial, Penderiaan Jauh, Kondisi 
Oseanografi

INTRODUCTION

Capture fisheries play a pivotal role in bolstering food security and 
the economy of coastal communities in Indonesia (Fuadi & Wiryawan 
2018). Among the fish species with significant economic value, mackerel 
(Rastrelliger spp.) stands out as a primary commodity in the small pelagic 
fisheries sector (Nurdin et al. 2015; Kamaruzzaman et al. 2021). The high 
demand for mackerel highlights the urgency of implementing sustainable 
fisheries management, particularly due to evidence of stock fluctuations 
and localised population declines in several regions (Shaari & Mustapha 
2018; Lakhnigue et al. 2019; Srioktoviana et al. 2024). Recent studies 
have shown that mackerel populations, including Rastrelliger spp., are 
increasingly vulnerable to overfishing and environmental variability, 
which may threaten long-term availability if not properly managed 
(Putri & Zainuddin 2019a; Huang et al. 2022; Nair et al. 2023). Therefore, 
integrating scientific approaches to enhance fishing efficiency while 
protecting critical habitats is essential to ensure the sustainability of 
mackerel fisheries.
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The identification of an appropriate fishing season is a critical determinant 
in the success of fishing operations (Ben-Hasan et al. 2019; Putri & Zainuddin 
2019b). Traditional methods of determining fishing seasons (Kurniawati et 
al. 2015) often rely on local knowledge and the experiental wisdom of 
fishers, which may prove inadequate in addressing the complexities and 
variability of fish stocks caused by oceanographic phenomena such as the 
El Nino Southern Oscillation (ENSO) and global climate change (Zainuddin 
et al. 2020; Mukherjee et al. 2023). Consequently, technology-driven 
and data-centric approaches are increasingly relevant to support more 
precise and informed decision-making (Nuno et al. 2005; Wang et al. 2016). 
Artificial Neural Networks (ANNs) have become increasingly prominent in 
ecological and fisheries modelling due to their ability to capture complex, 
non-linear relationships among multiple environmental variables (Guisan 
& Zimmermann 2000; Pradana 2023; Salem et al. 2023). Unlike traditional 
statistical methods such as linear or multiple regression, which assume 
linearity and independence among predictors, ANNs can handle large, 
heterogeneous datasets and identify intricate patterns in variables such 
as sea surface temperature (SST), chlorophyll-a concentration, salinity, 
and ocean currents (Zainuddin 2011; Yuniar et al. 2024; Wang et al. 2025). 
These advantages make ANNs particularly well-suited for modelling 
dynamic and spatially heterogeneous marine ecosystems, where fish 
behaviour is strongly influenced by the interplay of various environmental 
factors.

In addition, ANN-based models have demonstrated superior predictive 
accuracy and resilience under uncertain and variable conditions when 
compared to conventional approaches (Zhang & Zimba 2017; Prasad et 
al. 2023). Their application in fisheries not only enhances the precision 
of fish distribution and fishing season forecasts but also contributes 
to sustainability by informing more adaptive harvesting strategies and 
reducing the risk of overexploitation (Torri et al. 2018; Ibrahim et al. 2023). 
This study aims to develop a predictive model for the fishing season 
of Indian mackerel (Rastrelliger spp.) in the western part of the Banda 
Sea using an ANN algorithm. By incorporating dynamic oceanographic 
parameters into the modelling framework, this research seeks to contribute 
to data-driven fisheries management and support the implementation of 
sustainable fishing policies aligned with SDG 14 in Indonesia. Therefore, 
this study represents a strategic effort to enhance both the productivity 
and sustainability of the capture fisheries sector in the region.
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MATERIALS AND METHODS

Study Area

This study was conducted in the western part of the Banda Sea, located 
within the geographical coordinates of 120°E to 126°E and 2°S to 5°S 
(Fig. 1). This area is an integral part of Indonesia’s marine ecosystem 
and is globally recognised as one of the regions with the highest marine 
biodiversity (Aryanti et al. 2018; Ministry of Environment and Forestry  
2021). The Banda Sea lies within the Coral Triangle, which is widely known 
as the epicentre of global marine biodiversity (Veron et al.2009). The 
western Banda Sea also serves as a critical fishing ground for small pelagic 
species, particularly Indian mackerel (Rastrelliger spp.), which have 
historically contributed significantly to both local and national fisheries 
economies (Zainuddin et al. 2013; Kementerian Kelautan dan Perikanan 
[KKP] 2022). According to data from the Ministry of Marine Affairs and 
Fisheries, this region consistenstly records high catch volumes of Indian 
mackerel, making it a strategic site for studying fishing season patterns 
and habitat suitability (Nurdin et al. 2017; Harahap et al. 2020). The area’s 
dynamic oceanographic conditions—characterised by seasonal upwelling, 
current variability and nutrient availability—further highlight its ecological 
relevance for analysing the spatial and temporal distribution of mackerel.

FIGURE 1: The research location is in the western of Banda Sea which is included in 
the Coral Triangle area, Indonesia.
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Fisheries Data 

Monthly data on Indian mackerel fishing and production were collected 
between 2019–2022. The total production of mackerel catches amounted 
to 451.750 tonnes with approximately 16.833 fishing trips conducted using 
purse seine gear. The catch results were standardised using Catch Per 
Unit Effort (CPUE), calculated with the following mathematical formula:

Catch
EffortCPUE=

Where, Catch = Indian mackerel catch (Kg) and Effort = Number of fishing 
attempts (Trips).

The application of CPUE in this study is critical not only as a measure of 
fishing efficiency, but also as an indirect indicator of fish stock dynamics 
in the western Banda Sea. A high CPUE value reflects effective fishing 
performance and suggests a sufficient stock availability, while a declining 
CPUE may signal early signs of overfishing pressure or changes in 
environmental conditions (Andrade & Garcia 1999; Liu et al. 2020; Canales 
et al. 2024). In addition, CPUE was used to identify the most productive 
fishing season by analysing monthly trends. This temporal analysis 
allows researchers to determine peak mackerel fishing periods and 
better understand their spatial distribution. Furthermore, CPUE served 
as a target variable in the development of the ANN model, enabling the 
integration of catch data with environmental parameters such as sea 
surface temperature, salinity and ocean currents.

Oceanographic Parameter Data

This study utilised oceanographic parameters (SST, CHL-a, SSS, Current) 
obtained through in situ methods or direct field observations, as well as ex 
situ methods in the form of satellite imagery from various data providers 
(Table 1). 

TABLE 1. Oceanographic parameter data processed through satellite imagery.

No. Parameter Data source

1. Sea Surface Temperature/SST (°C) https://oceancolor.gsfc.nasa.gov/ 

2. Chlorophyl-a/CHL-a (mg/m3) https://oceancolor.gsfc.nasa.gov/

3. Current (m/s) https://data.marine.copernicus.eu/ 

4. Sea Surface Salinity/SSS (psu) https://data.marine.copernicus.eu/ 

https://oceancolor.gsfc.nasa.gov/
https://oceancolor.gsfc.nasa.gov/
https://data.marine.copernicus.eu/
https://data.marine.copernicus.eu/
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Analysing the relationship between oceanographic parameters is a key 
factor in understanding fish catch dynamics, particularly for small pelagic 
species such as Indian mackerel (Rastrelliger spp.) (Hidayat et al. 2021; 
Srioktoviana et al. 2024). Previous studies have demonstrated significant 
correlations between marine environmental parameters and mackerel 
landing patterns. For instance, seasonal variations in mackerel catches 
have been shown to correlate positively with chlorophyll-a concentration 
(CHL-a) and negatively with sea surface temperature (SST), with a one-
month lag (Sekadende et al. 2020). In addittion, to chlorophyll-a and SST, 
other oceanographic parameters such as sea surfacce salinity (SSS) and 
ocean current also play essential roles in influencing the distribution and 
abundance of Indian mackerel (Yang et al. 2024). Variability in SSS can 
affect water stratification and nutrient availability, indirectly influencing 
primary productivity and subsequently fish distribution (Lima Bomfim et al. 
2023). Moreover, ocean currents are key in larval transport and migration 
patterns, shaping spatial dynamics of pelagic fish species (Safruddin et 
al. 2014; 2018). Ignoring these factors may overlook important ecological 
drivers of fish aggregation and movement. Therefore, incorporating SSS 
and current data provides a more comprehensive understanding of the 
biophysical environment that governs mackerel dynamics.

To ensure the accuracy and consistency of the satellite imagery used in 
this study, a statistical validation process was conducted by comparing 
satellite-derived data with in situ measurements. The comparison 
employed correlation analysis, Root Mean Square Error (RMSE) and Mean 
Square Error (MSE) methods. The results confirmed that the satellite 
data used in this study were sufficiently accurate and representative to 
support the spatio-temporal analysis of Indian mackerel distribution in 
the western Banda Sea.

Data Analysis

The analysis of seasonal data in this study employs the FSI (Fishing 
Season Index) calculation to determine the fishing season based on the 
CPUE, using the following calculations:

The subsequent FSI analysis is utilised to ascertain the Fishing Season 
Index (FSI) (Dajan 1986) for Indian mackerel in western of Banda Sea:

Series of CPUE within 5 years period:

i iCPUE n=
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Moving Average CPUE (MA):

( )5

6

1
12

i
i ii i

MA CPUE+

= −
= ∑

Centred CPUE moving average (CMA):

( )1
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1
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i ii i
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Formula AM for Monthly Average ratio:

i
i

i

CPUE
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CMA
=

Average ratio for monthly i (AAM):

( )1

1 n
i ijj

AAM AM
n =

= ∑
The total monthly ratio (TAM):

12

1

1200

i
i

TAM AAM

CF
TAM

=

=

=

∑

Fishing Season Index: 

i iFSI AAM CF= ×

Where, ni = CPUE of the i-th order; AMi = 12-month moving average of 
the i-th order; CMAi = centred moving average of CPUE in month i;  AMi 
= monthly average ratio in month i;  AAMi = average for  i-th month (i = 1, 
2, 3,.., 12 and  j = 1, 2, 3,..., n); TAM = total of monthly average ratios; CF = 
Correction factor and FSIi = Fishing Season Index in month i.

In addition, this study employed statistical forecasting analysis to 
generalise monthly predictions of variable X, which was derived from 
catch point data. To improve prediction accuracy, an ANN model with 
a backpropagation learning algorithm was utilised. ANN is one of the 
most widely used artificial intelligence-based models due to its ability to 
model complex nonlinear relationships with high accuracy (Wu et al. 2020; 
Kenny et al. 2024). The ANN model architecture in this study consisted of 
three layers: one input layer, one hidden layer and one output layer. The 
input layer received predictor variables extracted from oceanographic and 
catch data. The hidden layer comprised 10 neurons, determined through 
a trial-and-error process to achieve optimal model performance. The 
sigmoid activation function was used in the hidden layer, while a linear 
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activation function was applied in the output layer, which is appropriate 
for continuous variable prediction tasks. The dataset was divided into 
two parts: 70% for training data and 30% for testing data, using a random 
sampling method. This partitioning aimed to objectively evaluate the 
model’s performance on unseen data. To evaluate the performance of 
the ANN model, two statistical error metrics were used: MSE and RMSE.

MSE is a commonly used metric to measure the average of the squared 
differences between the predicted values and the actual values. It is 
calculated as:

( )2

1

1   n
i ii

MSE Y Ý
n =

= −∑

Where Yi = actual value and n = number of observation/rows.

A lower MSE value indicates that the model’s predictions are closer to the 
actual data. However, since MSE produces values in squared units, RMSE 
is also used to bring the error back to the same unit as the original data. 
RMSE is the square root of MSE, formulated as:

( )2

  i py y
RMSE

n
−

= ∑

Where yi = actual value, yp = predicted value and n = number of observation/
rows.

RMSE provides a more interpretable scale for the error, making it easier 
to assess the predictive performance of the model in real-world units. 
Both metrics are sensitive to large errors, which makes them suitable 
for identifying models with poor generalisation. These error metrics are 
widely adopted in machine learning and time-series forecasting studies 
to ensure the reliability and robustness of predictive models (Datta & 
Faroughi 2023; Nicolas et al. 2023).  

RESULTS

Fishing Season

Based on the analysis and processing of mackerel production data from 
2019–2023 (see Fig. 2), it was determined that the mackerel fishing season 
(Rastrelliger spp.) occurs in November. 
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FIGURE 2: The study’s experimental setup in a greenhouse.

In Fig. 2, the highest CPUE and FSI values are November which has the 
highest number of catches and intensity. Other details can be seen in 
Table 2. 

TABLE 2. Intensity of the annual mackerel fishing season on 2019 to 2023 (five 
years) in western of Banda Sea.

No Month CPUE (kg/trip) FSI (%) ± std. dev Result

1 January 15.868 34.334 18.486 Regular season

2 February 40.353 93.609 61.259 Regular season

3 March 25.39 63.797 47.704 Regular season

4 April 41.148 107.242 66.15 Fishing season

5 May 27.536 59.427 24.521 Regular season

6 June 35.179 114.364 51.69 Fishing season

7 July 11.904 19.695 16.786 Lean season

8 August 58.849 108.364 54.022 Fishing season

9 September 125.25 178.093 110.056 Fishing season

10 October 65.76 82.51 63.014 Regular season

11 November 122.764 220.897 159.942 Peak season

12 December 71.883 117.667 93.508 Fishing season
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The low fishing season occurs from January to May, characterised by 
low CPUE and FSI values, indicating that this period is less productive 
for fishing. Conversely, higher CPUE values in certain months suggest 
that fish populations are more abundant or easier to catch during those 
periods, while FSI values reflect that fishermen are actively capitalising 
on this time as the primary fishing season. As for August, September, 
November and December, these months represent the harvesting period.

Mackerel fishing efforts in the research area over the past 3 to 4 years 
have shown a minimal level of activity (Fig. 3). This indicates that the 
fishing efforts are relatively limited, with indications that fishermen are 
concentrating their efforts at the same location during this period.

FIGURE 3: Coordinate points for mackerel fishing (Rastrelliger spp.) from 2019 to 
2023 (five years) in the Northwest of Banda Sea. 

Relationship between Oceanographic Parameters and CPUE

The results of data processing from the catchment points, linked 
to environmental conditions (oceanographic parameters), reveal the 
relationship between the X and Y variables as illustrated in Fig. 4.
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FIGURE 4: Percentage contribution of Sea Surface Temperature (SST), Chlorophyll-a 
Concentration (CHL-a), Sea Surface Salinity (SSS) and Current(s) relationship to 
mackerel catch.

The results of the data visualisation indicated that salinity and currents 
were the parameters most significantly influencing mackerel catches 
contributing 16% and 14%, respectively (Fig. 4). Conversely, the parameters 
of sea surface temperature (SST) and chlorophyll-a (chl-a) exhibited lower 
contribution values. This aligns with the findings of Nugraha et al. (2020), 
which demonstrated that while SST is a critical factor in determining the 
presence of fish, it does not significantly influence the quantity or size of 
fish catches in the western part of the Banda Sea.

These findings are further contextualised by the peak fishing season (Fig. 
2), which corresponds to the transitional period between the eastern and 
western monsoon seasons. During the period, increased rainfall leads to a 
significant decrease in salinity levels, stabilising surface salinity within the 
range of 30 psu–34 psu. This stability supports the reproductive activities 
of mackerel. Furthermore, transitional months such as November often 
experience shifts in currents and winds, potentially triggering upwelling 
in certain regions. This upwelling brings nutrient-rich, high-salinity water 
from deeper layers to the surface, enhancing primary productivity. The 
resulting abundance of nutrients serves as a critical food source for fish 
and mackerel larvae (Rastrelliger spp.).
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Prediction of Potential Mackerel Fishing Areas (Rastrelliger 
spp.) Based on ANN-Backpropagation

Fig. 5 shows a comparison between observed data (blue lines) and 
model-predicted data (red lines) for four key oceanographic parameters: 
sea surface temperature (SST), chlorophyll-a concentration, sea surface 
salinity (SSS), and ocean current speed over a one-year period (January–
December).

In general, the four graphs illustrate that the model can represent the 
seasonal patterns of each parameter well. The fluctuation patterns of 
temperature, chlorophyll-a, salinity, and ocean currents shown by the 
predicted data follow the observed data trends, although there are slight 
differences in values ​​in certain months, particularly during extreme 
conditions (maximum or minimum values).

This confirms that the prediction model has sufficient accuracy in depicting 
monthly oceanographic dynamics, making it suitable for understanding 
and projecting broader marine environmental conditions.

FIGURE 5: Comparative observation of model and actual data using MSE (Mean 
Squared Error) and RMSE (Root Mean Squared Error).
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In determining the potential fishing zones based on predictions, additional 
variables, including longitude, latitude and CPUE (Catch Per Unit Effort) 
predictions, were incorporated using the developed model. The results 
of the visualisation of the predicted potential mackerel fishing zones 
indicated that the parameters associated with the highest CPUE (343 
kg trip-1) were observed at a sea surface temperature (SST) of 31.4°C, a 
chlorophyll-a concentration (CHL-a) ranging from 0.18 to 1.5 mg/m³, a 
current velocity of 3.29 cm/s and salinity (SSS) level of 34.2 psu (Fig. 6).

FIGURE 6: Prediction of potential mackerel fishing zones (Rastrelliger spp.) is based on 
the peak season (November 2020–2023) using the implementation of the Artificial 
Neural Network (ANN-Backpropogation) model.

DISCUSSION

The findings of this tudy demonstrate that the modelling of seasonal 
patterns and mackerel fishing grounds (Rastrelliger spp.) using the ANN 
algorithm in the western of Banda Sea provides valuable insights into the 
management of fishery resources. Data analysis from 2019 to 2023 revealed 
that November marks the peak of the fishing season, characterised by 
the highest CPUE and FSI values. These findings align with previous 
research, which established that seasonal variations in mackerel landings 
are positively correlated with chlorophyll-a concentrations (CHL-a) and 
negatively associated with SST.

Further analysis indicated that salinity (SSS) and ocean currents were 
the most significant oceanographic parameters affecting mackerel 
catches during this period, contributing 16% and 14%, respectively. This 
underscores the critical role of environmental conditions in determining the 
distribution and productivity of fish populations, including reproduction, 
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which is often significantly influenced by salinity. Moreover, applying an 
ANN algorithm in this study proved to be highly effective, achieving a 
model accuracy exceeding 90%. The model successfully predicted fishing 
potential zones based on oceanographic parameters. 

The integration of seasonal fishing index with ANN-based habitat 
suitability modelling offers a novel approach to identifying both temporal 
and spatial hotspots of mackerel abundance. By leveraging satellite-
derived environmental data, this study provides a dynamic tool to guide 
fishers and policymakers in optimising fishing efforts while ensuring long-
term sustainability. The combination of high-resolution CPUE data with 
oceanographic variability reinforces the model’s robustness in simulating 
real-world fishery dynamics. In addition, the results of this study provide 
a scientific basis for developing adaptive and ecosystem-based fisheries 
management strategies for Indian mackerel in the Banda Sea. To ensure 
the sustainable exploitation, several concrete policy recommendations 
are proposed implementation seasonal fishing regulations aligned with 
peak fishing months identified by the model to prevent overfishing during 
spawning seasons, establish dynamic catch limits that reflect seasonal 
variability in mackerel abundance as predicted by the model and designate 
marine protected areas in critical habitats such as spawning and nursery 
grounds to safeguard population regeneration. These measures align with 
the principles of sustainable fisheries and support the achievement of 
SDG 14 in Indonesia. 

Furthermore, while the model was developed specifically for the 
western part of the Banda Sea, its high predictive accuracy and flexibility 
demonstrate its potential applicability to other fisheries in Indonesia 
and globally. The ANN approach can be adapted to model the habitat 
suitability of other species sensitive to oceanographic parameters, such 
as skipjack tuna, Sardinella lemuru and scad fish. Previous applications 
in different oceanographic contexts confirms the ANN’s versatility in 
supporting broader spatial fisheries planning. However, site-specific 
model recalibration and input parameter adjustment remain necessary 
to maintain accuracy and relevance across different ecological and 
geographic settings.

CONCLUSION	

This study developed a predictive model for the fishing season and 
potential fishing zones of Indian mackerel (Rastrelliger spp.) in the 
western of Banda Sea using an ANN approach. Based on analysis of catch 
data from 2019 to 2023, the peak fishing season for Indian mackerel 
occurs in November with the highest CPUE recorded at 220 kg/trip. 
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This high catch rate signifies the aggregation of fish schooling during 
a biologically favourable period, likely linked to spawning activity and 
nutrient availability. As such, it represents a crucial temporal for optimising 
fishing efficiency while minimising pressure on the stock. This finding 
supports the development of seasonal management measures tailored to 
the biological rhythms of the species. Oceanographic parameters, such 
as salinity (34.2 psu) and current velocity (3.29 cm/s) were identified as 
the most influential factors, contributing 16% and 14%, respectively to the 
success of the catch.

The ANN model demonstrated a high level of accuracy (error rate of 1.12%) 
in predicting potential fishing zones based on oceanographic parameters. 
These zones were characterised by a sea surface temperature of 31.4°C, 
chlorophyll-a concentrations ranging from 0.18 to 1.5 mg/m³ and stable 
salinity conditions.
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