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Abstrak: Perkembangan agrikultur di tropika ketinggalan di belakang perkembangan di
kawasan temperat disebabkan kekurangan teknologi maju dan pelbagai faktor biotik dan
abiotik. Untuk menghadapi permintaan yang meningkat terhadap makanan dan lain-lain
produk berteraskan tumbuhan, varieti tanaman yang lebih baik perlu dihasilkan. Untuk
membiak varieti yang lebih baik ini, pemahaman yang baik tentang genetik tanaman
diperlukan. Dengan adanya teknologi penjujukan DNA generasi terkehadapan, banyak
genom tanaman telah dijujuk. Kepentingan utama diberikan kepada tanaman makanan
termasuk bijirin, tanaman ubi, sayuran, dan buahan. Maklumat jujukan DNA amat penting
untuk mengenal pasti gen utama yang mengawal ciri agronomi penting dan untuk
menentukan kevariabelan genetik antara kultivar. Namun, penjujukan semula DNA secara
besar-besaran serta kajian pengekspresan gen perlu dilakukan untuk meningkatkan
dengan ketara pemahaman kita dalam genetik tanaman. Aplikasi pengetahuan dari
genom, transkriptom, kajian pengekspresan gen, dan epigenetik akan membolehkan
perkembangan varieti yang lebih baik dan mungkin mengarah kepada revolusi hijau
kedua. Aplikasi teknologi penjujukan DNA generasi terkehadapan dalam menambah baik
tanaman, limitasinya, prospek masa hadapan, dan ciri-ciri penting projek genom tanaman
diulas di sini.
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Abstract: Agricultural development in the tropics lags behind development in the
temperate latitudes due to the lack of advanced technology, and various biotic and abiotic
factors. To cope with the increasing demand for food and other plant-based products,
improved crop varieties have to be developed. To breed improved varieties, a better
understanding of crop genetics is necessary. With the advent of next-generation DNA
sequencing technologies, many important crop genomes have been sequenced. Primary
importance has been given to food crops, including cereals, tuber crops, vegetables, and
fruits. The DNA sequence information is extremely valuable for identifying key genes
controlling important agronomic traits and for identifying genetic variability among the
cultivars. However, massive DNA re-sequencing and gene expression studies have to be
performed to substantially improve our understanding of crop genetics. Application of the
knowledge obtained from the genomes, transcriptomes, expression studies, and
epigenetic studies would enable the development of improved varieties and may lead to a
second green revolution. The applications of next generation DNA sequencing
technologies in crop improvement, its limitations, future prospects, and the features of
important crop genome projects are reviewed herein.
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INTRODUCTION

Tropical countries are generally underdeveloped compared to temperate
countries. Poor agricultural productivity is a major reason for the
underdevelopment of tropical countries (Gallup & Sachs 2000). The tropics are
the centre of origin and domestication for many important crops. However,
colonial rule in many developing tropical countries has reduced the number of
crops to a few export commodities (Morales 2009), and the improvement of most
of the staple food crops has received the least attention. Lack of technological
adoption and various abiotic and biotic factors contribute to the decline in
agricultural productivity in the tropics. An integrated approach using improved
crop varieties and fertilisers and pesticides led to the green revolution in late
1960s, which could protect many of the developing countries against famine.
Hybridisation has emerged in the 1960s to 1980s as a powerful breeding tool that
gave rise to many high yielding crop varieties (Guimaraes 2009). A greater
understanding of genetics, together with technological advancement led to the
development of transgenic crops in 1990s (Mannion & Morse 2013). Transgenic
technology was widely accepted initially, as it allows the transfer of one or a few
desirable genes, in contrast to conventional breeding methods, in which
undesired genes may also be transferred. Several transgenic varieties have been
commercialised, including, insect resistant cotton, herbicide tolerant soybean,
and virus resistant papaya (Mannion & Morse 2013). However, currently
transgenic crops are controversial, especially genetically modified (GM) foods, as
they may cause food allergies and may transfer antibiotic resistance to bacteria
living in the gut (Mannion & Morse 2013). Environmentalists are concerned about
the gene flow from transgenic plants to the wild varieties and the ecological
imbalance that may be caused by transgenic plants with insecticidal proteins and
herbicide resistance genes. Transgenic crops are not allowed in many countries,
and transgenic research and field trials are not encouraged. Consequently, a
different approach that can meet both the limitations of conventional breeding
and the drawbacks of the transgenic approach is necessary for crop
improvement. The advancements in sequencing technologies in recent years has
revolutionised the field of genetics and opened a new era in crop breeding. The
wealth of knowledge obtained from genome, transcriptome, gene expression
profiles and epigenetic studies will help improve our understanding of underlying
gene regulatory networks to empower a systematic improvement of crop
breeding. Here, we review the applications in crop improvement for next
generation sequencing technologies, discussing the limitations and future
prospects of research. We also review the important crop genomes sequenced
thus far.

HOW NEXT GENERATION SEQUENCING HELPS CROP IMPROVEMENT
Identification and exploitation of genetic variation is the basis of plant breeding.

Traditional selection based on phenotype is tedious and time consuming.
Molecular markers help to associate the phenotype with genotype. Many DNA
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based molecular markers have been developed for major crops during the past
decades and used for detecting the genetic variation among the cultivars
(Varshney et al. 2009). Marker assisted selection has been carried out in the
progeny, which allows the early selection of desired progeny. DNA markers such
as restriction fragment length polymorphism (RFLP), random amplification of
polymorphic DNA (RAPD), amplified fragment length polymorphism (AFLP),
single sequence repeat (SSR), and single nucleotide polymorphisms (SNPSs)
have been identified and applied to improve breeding of several plants (Salgotra
et al. 2014). However, most of the conventional markers (RFLP, RAPD, AFLP,
SSR) are selectively neutral, as they are located in non-coding and non-
regulatory regions. When such markers are used for marker assisted selection,
there will be chances of false positives, due to genetic recombination (Salgotra et
al. 2014). Gene based functional nucleotide polymorphism, if identifiable within
the gene of interest, is more powerful and reliable. It is more advantageous than
conventional markers, as there is no recombination between the marker and the
gene of interest. Therefore, there is no information loss over time. Markers that
allow for the identification of allelic variation of a particular trait are more valuable
in crop breeding (Salgotra et al. 2014).

The recent advances in genome sequencing through next generation
sequencing (NGS) technologies provide opportunities to develop millions of novel
markers, as well as the identification of agronomically important genes (Edwards
& Batley 2010). SNPs now dominate over other molecular marker applications,
with the advancement in sequencing technology. Traditionally, PCR amplification
is performed for the genomic region of interest from multiple individuals
representing the diversity in a population, followed by sequencing. The
sequences were then aligned to identify polymorphisms (Edwards & Batley
2010). This approach is expensive and time consuming. Now, large quantities of
sequences generated through NGS platforms, together with the development of
in silico methods, enable cheaper and more efficient SNP discovery. This
approach also allows for the identification of functional indels (insertions or
deletions), including partial or complete deletions of genes and different numbers
of repeat motifs within SSRs (Salgotra et al. 2014). These markers have been
used for the development of molecular genetic and physical maps, and for
identifying the genes or quantitative trait loci controlling economically important
traits (Varshney et al. 2009).

Advancements in NGS enabled the development of high-density genetic
maps. Genetic mapping places the markers in linkage groups based on their
co-segregation. The genetic map predicts the linear arrangement of markers in a
chromosome based on the recombination frequency between genetic loci in a
population derived from crosses of genetically diverse parents (Edwards & Batley
2010). The enormous sequence data obtained through NGS technologies have
enabled the improvement of genetic maps by increasing marker density.
Thousands of markers may be located in different linkage groups. It helps to
localise corresponding scaffolds on the map, thus enabling the possibility of
complete genome mapping (Perez-de-Castro et al. 2012). It also helps to replace
traditional quantitative trait locus (QTL) mapping with association mapping,
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because QTL provide a wide genome range within which the gene is located,
whereas association maps mark traits with high resolution.

The sequence data obtained from genomes and transcriptomes, together
with their expression profiles that are associated with different physiological
conditions, will help to identify the genes determining different traits. These data
enable the unravelling of the regulatory mechanisms behind different traits, and
help to elucidate the complete pathway. These data also enable the identification
of allelic variations in candidate genes controlling important agronomic traits,
which is crucial for successful breeding programmes. Identification of the key
genes underlying a trait enables the transfer of the trait to another cultivar or
species by genetic modification; alternatively, these traits may be incorporated
into a cultivar by marker-assisted selection (Edwards & Batley 2010).
Furthermore, the analysis of copy number variations among and between
species will contribute to the understanding of the mechanism of heterosis
(Bolger et al. 2014). In addition to the sequence variation, epigenetic changes are
also responsible for heritable traits (Bevan & Uauy 2013). Advancement in
sequencing technologies allows for the survey of genome-wide epigenetic
variation at high resolution through techniques such as bisulfite sequencing
(Bi-seq), methylated DNA immunoprecipitation sequencing (MeDIP-seq), and
methylation-sensitive restriction enzyme sequencing (MRE-seq) (Bell & Spector
2011).

Low agricultural productivity in the tropics can be explained by
problematic soil due to humidity, rain fall variability, limited irrigation potential,
pest and disease loads, and net photosynthetic potential differences (Gallup &
Sachs 2000). The lack of freezing temperatures in the tropics favours an
increased number of agricultural pests. Although the tropics are warmer and
sunnier, it is generally cloudy, thus sunlight is blocked, which is disadvantageous
for photosynthesis (Gallup & Sachs 2000). Also, night-time temperature is
generally high, which causes high respiration and slows the rate of plant growth
(Gallup & Sachs 2000). Identification of genes associated with disease resistance
and other abiotic stress management would be particularly important for
improving tropical agriculture. The knowledge obtained from genomes,
transcriptomes, gene expression studies, and epigenetic variation studies would
help to develop crop varieties that are capable of overcoming the disadvantages
of tropical climates. Finally, one possible impact of genomics on plant breeding
could be the development of a systems breeding approach, which integrates
gene function information and regulatory networks to predict and estimate the
contributions of genetic and epigenetic variations to phenotypes and field
performance (Bevan & Uauy 2013).

A GLIMPSE INTO THE SEQUENCED CROP GENOMES

Following the genome sequencing of the model plant Arabidopsis, a number of
crop species have been sequenced, many being important to tropical countries
(Table 1). Most of the genome assemblies are in draft stage and extensive work
is ongoing in the direction of closing the gaps and re-sequencing. In addition to
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the genome sequence, transcriptomes and expressions profiles are also
available for many crops. The large genome size and polyploidy exhibited by
many crop species impedes the sequencing and further analysis. A high
percentage of repeat elements is also a major hurdle in genome assembly.
However, a platform has been established for many important crops and further
research could lead to more information for application in crop breeding.

Sequencing Food Crops: An Endeavour to Reduce Hunger

The recent surge in plant genome sequencing is primarily aimed to reduce
hunger. Among the sequenced plant genomes, most are food crops that are
especially important for tropical countries. These crops include different cereals,
pulses, tuber crops, vegetables, fruits, and oil plants. Functional markers have
been developed for many of these crops and genes controlling agronomically
important traits have been identified. However, re-sequencing and gene
expression studies are continuing to be completed for a comprehensive
understanding of genetic mechanism behind each trait and to identify allelic
variations. In addition to the sequenced crops, many genome projects are
underway or at the planning stage.

Three thousands rice genomes to feed billions

Rice (Oryza sativa) is the most important crop, as staple food for more than half
of the world’s population (Yu et al. 2002). It is the main food crop in most of the
tropical countries. Rice cultivation occupies 11% of the world’s total arable land
and it is a source of income for more than 100 million people around the world
(Guimaraes 2009). O. sativa has two major sub species, indica and japonica.
Japonica varieties are usually cultivated in temperate regions, while indica
varieties are important for the tropics. A third sub species, javanica is also
cultivated in the tropics and is also known as tropical japonica. Glaszmann (1987)
classified O. sativa into six groups; indica, japonica, aromatic, aus, rayada, and
ashina, based on isozymes.

In the 1960s significant attention was given to the genetic improvement
of rice, which preceded the green revolution. The main breeding goals were to
increase vyield, grain quality, resistant to blast disease, and drought tolerance
(Guimaraes 2009). In the subsequent years, many high-yielding, semi-dwarf
varieties (e.g., IR8) were developed by hybridisation. Mutation breeding was also
popular for the development of new rice varieties. Biotechnological tools such as
anther culture and protoplast fusion were shown to be promising tools in rice
breeding (Guimaraes 2009). Several transgenic rice species (e.g., Golden rice)
were also produced in 1990s (Khush & Brar 2003). In addition, different types of
molecular markers were developed for rice and marker assisted selection has
been employed in breeding programmes (Chen et al. 2000). A high-density rice
genetic map was constructed with 2,275 markers (Harushima et al. 1998).
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The development of NGS technology enabled fast-forward genetic
studies in rice (Huang et al. 2013b). The International Rice Genome Sequencing
Project (IRGSP) started in 1997, and included representation from 11 countries
(International Rice Genome Sequencing Project 2008). The 12 chromosomes of
0. sativa were distributed among the groups from 11 different countries (China,
Japan, India, United States of America, United Kingdom, Taiwan, Korea,
Thailand, France, Brazil, and Canada) (Eckardt 2000). Some private firms also
contributed to the rice genome sequencing. In 2000, Monsanto completed a draft
of the rice genome and made it available to IRGSP (Eckardt 2000). IRGSP aimed
to obtain a high quality, map-based sequence of the rice genome using cultivar
Nipponbare of O. sativa ssp. japonica. IRGSP adopted the clone-by-clone
shotgun sequencing strategy so that each sequenced clone can be associated
with a specific position on the genetic map (http://rgp.dna.affrc.go.jp/IRGSP/
index.html). In addition, two independent groups published the draft genome of
both indica (Yu et al. 2002) and japonica (Goff et al. 2002) sub-species using
whole genome shotgun strategy. The genome assembly of the indica sub-
species was 466 Mb in size with an estimated 46,022 to 55,615 genes (Yu et al.
2002). The genome size of O. sativa ssp. japonica was estimated to be 420 Mb
and the assembly covered 93% of the genome with 32,000-50,000 gene
predictions. Only 49.4% of predicted rice genes had homologs in Arabidopsis
thaliana, whereas 80.6% of predicted A. thaliana genes were represented in rice
genome (Yu et al. 2002). IRGSP released a high-quality map-based draft
sequence in December 2002. They completed the rice genome sequencing in
December 2004 and a high quality map-based sequence of the entire genome
was published (International Rice Genome Sequencing Project 2005) and is
available in public databases. The genome size was found to be 389 Mb,
comprising 37,544 protein coding genes. The transposon content was estimated
to be 35%, and 80,127 polymorphic sites were identified that distinguishes
japonica and indica. Sequence and physical maps for individual chromosomes
were also published, including chromosome 1 (Sasaki et al. 2002), chromosome
4 (Feng et al. 2002), chromosome 10 (The Rice Chromosome 10 Sequencing
Consortium 2003), chromosome 3 (The Rice Chromosome 3 Sequencing
Consortium 2005), chromosome 11 and 12 (The Rice Chromosomes 11 and 12
Sequencing Consortia 2005) and chromosome 5 (Cheng et al. 2005).

The various rice genome projects released an enormous amount of
invaluable information and laid a strong foundation for rice genomics. These data
were used to elucidate a major QTL for rice grain production, Gnla, which was
later identified as a cytokinin oxidase/dehydrogenase, an enzyme that degrades
cytokinin (Ashikari et al. 2005). Later, the transcription factor controlling the
expression of Gnla was identified to be a zinc finger transcription factor, DST
(draught and salt tolerance) (Li et al. 2013), which has been reported to regulate
drought and salt tolerance in rice (Huang et al. 2009b). A genome-wide
association study in a population of 950 world-wide rice varieties, including both
indica and japonica subspecies, identified 32 loci associated with flowering time
and 10 loci were associated with grain-related traits (Huang et al. 2012).
However, more QTLs have to be mapped and the genetic variability between the
cultivars and novel alleles from diverse germplasm has to be identified to improve
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breeding programmes. The International Rice Research Institute (IRRI), the
Chinese Academy of Agricultural Sciences (CAAS) and the Beijing Genome
Institute (BGI) have undertaken a re-sequencing of 3,024 rice varieties to
uncover the allelic variation. Alignment to the reference, japonica Nipponbare
genome identified variants at over tens of millions loci. Variant calling with other
reference genomes is underway (McNally 2014). The re-sequencing of 3,000 rice
genomes would be the second milestone in rice genomics. Systematic mining of
these data would help to link phenotypic variation to functional variation. Future
crop breeding programmes should consider the effects of climate change and
loss of arable land. As this project comprised rice varieties from different
geographical locations, including many indigenous varieties, it can address
guestions on the genetic variations linked to climate and geographical factors.
The results would lead to the generation of some of the most valuable data for
rice breeding, eventually leading to the development of superior varieties with
improved yield, high nutritional quality and improved tolerance towards diseases,
pests, different soil conditions, and stresses such as draught and flood, to feed
billions, especially the populations of developing tropical countries.

More than Food: Other Economically Important Crop Genomes

In addition to food crops, a few other economically important crops were also
sequenced (Table 1). Some of these crops are highly valuable, governing the
economy of tropical countries. Systematic mining and utilisation of these data
would help to develop varieties with higher yield and tolerance to biotic as well as
abiotic stresses, and would boost up the economy of many tropical countries.

Rubber and oil palm genomes: Promises to Malaysian economy

Natural rubber (NR) is a unique biopolymer used in the manufacture of over
50,000 products world-wide (Nair 2010). Hevea brasiliensis (rubber tree) is the
major source of NR. The rubber tree originated from the amazon basin and has
been domesticated in other tropical countries. Today, rubber cultivation is mainly
performed in the Asian countries, which account for 93% of the world’s supply.
Malaysia has 4th position in NR production, after Thailand, Indonesia, and
Vietnam. NR production in Malaysia was in its peak during the early 20th century;
however, rubber plantation area has been gradually decreasing over the past 10
years. The rubber cultivation area reduced to 1.02 million ha in 2011 (Economic
Transformation Programme [ETP] 2012). Decreased yield and susceptibility to
diseases are the major challenges for rubber cultivation. Several high yielding
clones were developed by the Malaysian rubber board and by rubber research
centres in other countries. However, global demand for NR is increasing and to
cope with this demand, genetically improved clones with more productivity have
to be developed. In addition to NR, rubber wood is used as a source of timber
with export value.

Towards molecular breeding, several molecular markers have been
developed for rubber tree and a saturated genetic linkage map was published
based on RFLP, AFLP, microsatellite, and isozyme markers (Lespinasse et al.
2000). The same group published another linkage map for the H. brasiliensis
cultivar MDF 180, which is resistant to South American leaf blight, and the QTL
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for resistance was mapped (Le Guen et al. 2011). Expressed sequence tags
(EST) were generated from rubber latex, which provided more insights into
rubber biosynthesis (Ko et al. 2003; Chow et al. 2007). With the advent of next
generation sequencing technologies, several transcriptome sequencing projects
have been completed and have been made available in the public domain
(Triwitayakorn et al. 2011; Xia et al. 2011; Chow et al. 2012; Gébelin et al. 2012;
Li et al. 2012; Lertpanyasampatha et al. 2012; Pootakham et al. 2012; Tang et al.
2013; Salgado et al. 2014). To obtain more insight into the noncoding regions
and their regulatory roles, the draft genome of H. brasiliensis was published
recently (Rahman et al. 2013). The assembly comprises 1.1 Gb of scaffolds of
the estimated 2.1 Gb of genome. Approximately 78% of the genome was
estimated to be repetitive DNA. A total of 68,955 gene models were predicted, of
which 12.7% are unique to H. brasiliensis. Most of the genes associated with
rubber biosynthesis, rubber wood formation, disease resistance and allergenicity
have been identified. The genomic information together with transcriptomes
provides a good foundation for the genetic studies and crop improvement.

Rubber yield depends mainly on three factors—the number of laticifer
rings, the rate of sucrose loading into the laticifers and the rate of isopentenyl
diphosphate (IPP) polymerisation on the rubber particle. Systematic mining of
genomic and transcriptomic information together with further expression studies
would help to identify the key genes associated with the above aspects, which
could be utilised in breeding clones with higher yield. A major impairment to
rubber cultivation is its susceptibility to various diseases. Genomic and
transcriptomic studies have identified the disease resistant genes and further
studies would reveal more insights into the rubber tree’s genetic interaction with
specific pathogens, leading to the development of disease resistant clones.
Moreover, rubber cultivation is geographically restricted to a few regions.
Increasing the area of rubber cultivation is another important approach to
increase rubber production to cope with the global demand. Systematic mining of
genomic and transcriptomic data would lead to the identification of genes
imparting resistance to various geographical ailments and would lead to the
development of clones suitable for various agro-climatic regions.

Oil palm (Elaeis guineensis) is the principal source of palm oil. Palm oil is
a food ingredient and is also used to produce biodiesel and other industrially
important products. In addition, palm biomass is used to generate renewable
energy, fuels, and biodegradable products. Oil palm is a native plant to west and
central Africa, and domesticated in South East Asia in the 19th century
(Gerritsma & Wessel 1997). Malaysia is the second largest producer of palm oil,
after Indonesia. Indonesia and Malaysia produce approximately 85% of the
world’s palm oil. The palm oil industry is one of the key economic drivers of these
countries. In Malaysia, the oil palm planted area reached 5.23 million hectares by
2013 (Malaysian Palm QOil Board [MPOB] report, May 2013). Malaysia’s palm oil
sector is targeted to boost the country’s total gross national income (GNI) by
RM 125 billion to RM 178 billion by 2020 (ETP 2012).

Oil palm breeding has been revolutionised by the discovery of a single
gene inheritance for shell thickness. The gene shows co-dominant monogenic
inheritance, and has been exploited in breeding programmes (Sambanthamurthi

104



Sequencing Crop Genomes to Improve Tropical Agriculture

et al. 2009). With the advancement of genomics technology, the generation of
ESTs, genetic mapping and application of DNA chip technology have been
employed (Sambanthamurthi et al. 2009). A linkage map was constructed
comprising 17 linkage groups with 117 RFLP loci, 384 AFLP markers and 23
SSR markers (Singh 2005). Several QTLs and the fruit colour genes (vir) have
been successfully tagged in the linkage map. The markers associated with shell
thickness have been identified; however, the closest marker linked to the shell
thickness loci was mapped approximately 5 cM away from the shell thickness
loci, far away to allow for an error free selection of the trait in the nursery
(Sambanthamurthi et al. 2009). The ESTs also provided a platform for large-
scale functional analysis of the genes using microarrays.

With the recent surge in next generation sequencing, the 1.8 Gb
E. guineensis genome was sequenced with a combination of Roche/454 and
Sanger bacterial artificial chromosome (BAC) end sequencing (Singh et al.
2013b). In addition, transcriptome data from 30 tissues and a draft sequence of
the South American oil palm, Elaeis oleifera were reported. A total of 34,802
genes were predicted, including oil biosynthesis genes, homologues of
WRINKLED1 (WRI1), and other transcriptional regulators, which are highly
expressed in the kernel (Singh et al. 2013b). In the subsequent studies, the gene
responsible for the shell thickness (SHELL) was identified and mapped (Singh
et al. 2013a), delivering the opportunity for further exploitation in breeding
programmes. Recently, an SNP based high density linkage map was constructed
using genotyping by sequencing approach, and 3 QTL affecting trunk height and
a single QTL associated with fruit bunch weight were identified (Pootakham et al.
2015). The sequence information provides the opportunity to mine other key
genes responsible for higher productivity and resistance to biotic and abiotic
stress.

A major criticism against oil palm cultivation is that oil palms are grown in
rainforest regions and a large area of precious virgin forests is felled for oil palm
plantation. This criticism will be more severe in the future, as the global demand
for palm oil is increasing. Extending oil palm cultivation to less suitable areas is
the only way to overcome this problem. However, this would severely affect the
productivity and thereby the economy of Malaysia, the country currently with the
highest cultivation of oil palms. Utilising the vast resource of genome sequence
information, it is possible to identify the genes providing resistance against the
adverse soil and environmental conditions in these areas, which would help to
breed suitable varieties for these regions. The genome sequence could be a rich
resource for oil palm breeders and could be an important step towards the
sustainable production of palm oil to meet the global demand, and for the
sustainability of Malaysian economy.
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LIMITATIONS AND FUTURE DIRECTIONS

The advancement in sequencing technology has revolutionised the field of
genetics, enabling the mass sequencing of genomes and transcriptomes. Taking
advantage of the new technologies, many crop genomes have been sequenced.
However, this research is still in its embryonic stage. Many crop genome
assemblies are still in the draft stage. A high percentage of repeats in many plant
genomes makes it difficult to assemble the short reads from the NGS platforms.
Failure to capture the information embedded in the repetitive fraction of the
genome is a major drawback, as it may have key roles in regulatory aspects
(Feuillet et al. 2011). Heterozygosity and polyploidy also add to the difficulties.
The redundancy created by 2 or more sets of genes can affect the accuracy of
genome assembly (Feuillet et al. 2011). Scientists are trying to close the gaps in
the assembly using a non-gridded BAC library approach. Launching third-
generation sequencing platforms such as Pacific Biosciences would be promising
to obtain longer reads for the assembly of whole chromosomes. Purification of
individual chromosomes and using them for shotgun sequencing or construction
of BAC libraries is also a powerful method to obtain the complete genome
assembly (Bolger et al. 2014). Another shortcut to improve the assembly is the
approximate ordering and positioning of genes, uses the synteny information
from related species (Bolger et al. 2014). Extensive re-sequencing is needed for
the detection of SNPs. The cost of sequencing is the major hurdle here.
However, the cost has been reduced considerably in recent years and is
expected to be cheaper in the near future. Sequence capture and targeted
sequencing is advantageous in this respect as it is cost-effective and helps to find
the variants in the selected genomic region. More reliable and user-friendly
software have to be developed for more precise data analysis.

Another challenge is that the functions of many genes identified by
genome sequencing remain unknown and the genetic control of the majority of
agronomic traits has yet to be determined. Global research in A. thaliana has
revolutionised the understanding of basic mechanisms in plant development,
adaptation and tolerance to abiotic and biotic stresses. As the basic pathways
are common to all plants, Arabidopsis genes can be used as candidate genes for
identifying orthologs in crops. However, such translational biology is complex and
inefficient for disease resistance. This is because, there are two resistance
mechanisms; pathogen associated molecular pattern-triggered immunity (PTI)
and effector-triggered immunity (ETI), of which ETI is specific to each species
(Feuillet et al. 2011). Moreover, several crop plants are polyploids with more
complex regulation between homoeologous genes, which may obscure the
orthologous relationship between models and polyploid crop genomes (Feuillet
et al. 2011). Gene expression profiling of different physiological responses by
microarray or RNA-seq can provide clues to the functionality of genes. However,
complete characterisation is needed before attempting gene transfer. The
negative pleiotropic side effects also have to be considered (Salgotra et al.
2014). A complete and precise knowledge of the sequence, expression and
functions of the genes has to be obtained before translating them into application
through breeding. This decade should focus on acquiring knowledge and the

106



Sequencing Crop Genomes to Improve Tropical Agriculture

application of the knowledge acquired would be expected in the coming decades
in the form of improved varieties of crops with better yield and resistant to biotic
and abiotic stress.

CONCLUSION

Advancement in sequencing technologies has had a great impact on crop
genetics, enabling the sequencing of genomes and transcriptomes of several
crops. Although, reference genomes have been obtained for many important
crops, massive re-sequencing and gene expression studies are essential to
identify the key genes responsible for a desired trait and to find its allele
variability. Utilisation of this knowledge in crop breeding would empower the
development of better crop varieties and may lead to a second green revolution.
This would reduce the hunger of billions and revolutionise the economies of
developing tropical countries.
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