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Abstract: An investigation study was conducted in Bukit Merah Reservoir (BMR) for the 
assessment of arsenic concentration in the surface sediment in 23 sampling stations. 
The sediment samples were digested and analysed for arsenic using Inductively Coupled 
Plasma-Optical Emission Spectrometry (ICP-OES). Sediment parameters such as pH  
(4.42 ± 0.71), redox potential (121.77 ± 42.45 mV), conductivity (205.7 ± 64.07 µS cm–1)  
and organic matter (25.35 ± 9.34%) were also examined. The main objectives of this study 
are to determine the arsenic distribution and concentration and at the same time to assess 
the enrichment of arsenic using the geoaccumulation index (Igeo) and enrichment factor 
(EF). This study shows the total arsenic concentration in the surface sediment of BMR 
is 4.302 ± 2.43 mg kg–1 and found to be below the threshold value of Canadian Interim 
Sediment Quality Guidelines (ISQG). High arsenic concentration is recorded near the 
southern part of the lake where anthropogenic activities are prevalent. Based on Igeo, 
13% of sampling stations are categorised as moderately polluted, 52.2% as unpolluted to 
moderately polluted and the rest is categorised as unpolluted. EF shows 78.3% stations are 
classified as extremely high enrichment and the rest as very high enrichment. This finding 
provides important information on the status of arsenic contamination in BMR and creating 
awareness concerning the conservation and management of the reservoir in the future.

Keywords: Sediment, Heavy Metal, Arsenic, Geoaccumulation Index, Enrichment Factor

Abstrak: Satu kajian penyelidikan telah dilakukan di Takungan Bukit Merah (BMR) 
untuk menilai kepekatan arsenik pada permukaan mendapan di 23 stesen pensampelan. 
Sampel mendapan dicerna dan dianalisa menggunakan Inductively Coupled Plasma-
Optical Emission Spectrometry (ICP-OES). Parameter mendapan seperti pH (4.42 ± 0.71), 
keupayaan redoks (121.77 ± 42.45 mV), kekonduksian (205.7 ± 64.07 µS cm–1) dan 
jirim organik (25.35 ± 9.34%) juga diuji. Objektif utama kajian ini adalah untuk mengenal 
pasti taburan dan kepekatan arsenik dan pada masa yang sama menilai pengayaan 
arsenik menggunakan indeks pengumpulan geo (Igeo) dan faktor pengayaan. Kajian ini  
menunjukkan jumlah kepekatan arsenik pada permukaan mendapan di BMR ialah 
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4.302 ± 2.43 mg kg–1 dan didapati di bawah nilai ambang Garis Panduan Kualiti Interim 
Mendapan Kanada. Kepekatan arsenik yang tinggi direkodkan berhampiran selatan 
tasik di mana aktiviti antropogen tersebar. Berdasarkan Igeo, 13% daripada stesen 
pensampelan dikategorikan sebagai sederhana tercemar, 52.2% tidak tercemar kepada 
sederhana tercemar dan bakinya dikategorikan sebagai tidak tercemar. Faktor pengayaan 
menunjukkan 78.3% stesen diklasifikasikan sebagai pengayaan yang sangat tinggi dan 
bakinya agak tinggi. Dapatan ini memberikan maklumat yang penting berkenaan status 
pencemaran arsenik di BMR dan mewujudkan kesedaran terhadap pemuliharaan dan 
pengurusan takungan ini di masa hadapan. 

Kata kunci: Mendapan, Logam Berat, Arsenik, Indeks Pengumpulan Geo, Faktor 
Pengayaan

INTRODUCTION

Arsenic (As) is a highly toxic and carcinogenic metalloid that posed a serious 
threat to living organisms including humans. This metalloid is responsible for 
many accidental, occupational and therapeutic poisonings since its first discovery 
in 1250 (Mudhoo et al. 2011). Arsenic naturally distributed in the earth’s crust at 
an average concentration of 1.5–5.5 mg kg–1 (Bosch et al. 2016; Sakan et al. 2012; 
Shtangeeva 2005). Arsenic is ubiquitous in soil, sediment and groundwater. In 
unpolluted soil, the average concentration of arsenic is between 1–40 mg kg–1 and 
might reach up to 14000–27000 mg kg–1 in the heavily polluted soil. The average 
concentration of arsenic in surface sediment usually below 10 mg kg–1 (Huang 
et al. 2016; Loska et al. 2003; Sakan et al. 2012). 

In the 20th century, the most devastating arsenic poisoning was reported 
in Bangladesh with 70–80 million people are affected due to groundwater 
contaminated with arsenic. The level of arsenic in tube-well water in the district 
boarding the West Bengal is recorded ranging from 150 ppb–200 ppb, nearly 
four times higher than permissible limit (Alam et al. 2002; Hassan et al. 2011; 
Riaz Uddin & Naz Hasan 2011). Arsenic can cause an acute and chronic 
effect in humans such as neurotoxicity, skin problems, cardiovascular disease, 
hematological, respiratory symptoms, developmental effects and various types of 
cancer (Bosch et al. 2016; Kapaj et al. 2006; Rasheed et al. 2016; Sanyal et al. 
2017; Yang et al. 2016). 

The source of arsenic might came from natural factors such as geological 
weathering, biological and anthropogenic. Geological weathering is the primary 
factor of groundwater contamination by arsenic. A high level of arsenic in 
groundwater can enter the food chain by the accumulation of arsenic by aquatic 
plant and phytoplankton and then continue to the next trophic level. Consuming 
of aquatic organism contaminated by arsenic such as fish is considered one of 
the leading factors of arsenic toxicity. Nevertheless, the source of arsenic from 
human activities (i.e., gold mining, smelting activities, production of semiconductor 
(gallium arsenide), manufacturing of arsenic-based pesticides and wood 
preservative) is the primary issue of arsenic pollution (Ali et al. 2016; Bosch et al. 
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2016; Rasheed et al. 2016; Roy 2010). The total amount of arsenic production 
through anthropogenic activities had reached 140,0000 t per year, compared to 
3,000 t per year by volcanic activity, and 45,000 t per year by the natural process 
of rocks and soil weathering (Shtangeeva 2005).  

The solubility of arsenic is influenced by soil pH, organic matter, soil 
mineralogy and arsenic oxidation state (Cagnin et al. 2017; Hooda 2010; Wang 
et al. 2016). In the natural environment, arsenic can exist in many different forms 
whether it is organic; methylarsonic acid (MMA5+) acid, methylarsonous acid 
(MMA3+) or inorganic; arsenate (As(V)), arsenite (As(III)) (Rasheed et al. 2016). 
However, in sediment the predominantly arsenic speciation in oxidising conditions 
is As(V) while As(III) in reducing condition. Inorganic arsenic is also relatively 
mobile in the soil especially in alkaline soils (Hooda 2010; Wang et al. 2016). 
As(V) is readily sorbs to the mineral in the sediment, thus less mobile and less 
toxic compared to As(III). Nevertheless, both inorganic arsenic is carcinogenic, 
mutagenic and teratogenic (Hatje et al. 2010). This type of inorganic arsenic is the 
most dangerous type to the aquatic organism and human being due to its stability 
and readily absorbed by gills, liver, gastrointestinal tract, abdominal cavity and 
muscle (Bosch et al. 2016; Rasheed et al. 2016). There is also enough evidence 
to associate the ingestion of inorganic arsenic in the human will lead to bladder 
and lung cancer (Hassan et al. 2011; Kapaj et al. 2006). Due to the hazardous 
effect and its widespread usage in agriculture and industrial, arsenic is classified 
as the number one toxin on the US Environmental Agency’s list of pollutants 
(Hatje et al. 2010). 

Bukit Merah Reservoir (BMR) is the oldest man-made reservoir in 
Peninsular Malaysia, which function as a source of agricultural irrigation and 
domestic water supply. This reservoir provides water for a double cropping 
system of paddy fields under the Kerian Irrigation Scheme, which covers 24 000 
hectares of paddy fields. This is the largest granary operated and maintained 
by the Malaysian Drainage and Irrigation Department. Currently, BMR also 
supplies freshwater for domestic and commercial demand in both Kerian and 
Larut Matang District with an estimation of 200,000 residents. BMR also provides 
a source of the inland fishery for the 50 registered fisherman with annual fish 
production estimated at 38 kg ha–1 yr–1 (Ambak & Jalal 2006; Hidzrami 2010). 
This lake also considered as the original sanctuary of the endangered golden 
Arowana (Scleropages formosus) in this country. Along with its long history, this 
reservoir had undergone rapid development around the perimeters of the lakes 
such as agriculture, tourism, sand mining and logging. For instance, palm oil and 
rubber plantation constitute 48.3 km2 and 98.9 km2  which represent 12% and 
24% of the land used around the BMR (Hidzrami 2010). Therefore, there is a 
possible input of arsenic into the lake due to these anthropogenic activities. Due 
to these anthropogenic activities, eutrophication is the major problem faced by the 
reservoir. Being a lentic and eutrophic water body, this arsenic likely to accumulate 
and concentrate at the surface sediment of the lake and there is always a possible 
release of arsenic into the water and later bioaccumulate in an aquatic organism 
such as fish (Qin et al. 2016). 
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Although there have been a number of studies on the contamination of 
heavy metals in BMR in the past few years, these studies were limited to the 
water column, and none of these studies reported the presence of arsenic in 
BMR (Akinbile et al. 2013; Shuhaimi-Othman et al. 2010). The arsenic from the 
anthropogenic activities ultimately will enter the aquatic ecosystem in solution form. 
Gradually, these potentially toxic elements will bind or adsorption to particulate 
matter in the water column (i.e., suspended sediment, organic and inorganic 
colloidal particles). This particulate matter will eventually settle and accumulate 
into the surface sediment of the aquatic environment (Adel Mashaan et al. 2011; 
Khodami et al. 2017; Shafie et al. 2013). Therefore, assessment of sediment is 
crucial because it is known to act as both source of water pollution and sink for 
arsenic and can determine the fate, effect and transport of arsenic due to change 
of physico-chemical parameters (Sakan et al. 2012; Wang et al. 2016). Hence, 
this paper is aimed at determining the concentration and distribution of arsenic in 
the surface sediment of BMR.

Geo-accumulation index (Igeo) and enrichment factor (EF) are widely used 
for the assessment of the degree of pollution and health status of the sediment. The 
advantage of the two indices is that they can identify whether the level of arsenic 
in sediment is due to anthropogenic input or natural input or a combination of both. 
The information provided through this study will facilitate a better understanding 
of the distribution and enrichment of arsenic in this area, thus provide useful 
preliminary information for further environmental conservation and sustainable 
management of other man-made lakes in this country.

MATERIALS AND METHODS

BMR is created by modified homogenous embankment method constructed in 
the upper stream of Kurau River and Merah River confluence in 1906 (Fig. 1). 
The initial height of the dam after the construction completed is 8.08 m, and then 
during the Second Malaysia Plan (1961 to 1965) its embankment was raised to 
10.67, and the latest modification was completed in 1984, with the final height of 
the dam is 11.28 m. The reservoir has two spillways located on south and north 
where maximum discharge is estimated at 141.58–424.75 m3 s–1 respectively 
(Hidzrami 2010; Siti Hidayah et al. 2012).

BMR  with surface area around 40 km2 is located in the district of Kerian 
in the Northen Perak State at a longitude of 5° 2’ 00’’ and latitude 100° 40’ 00’’ 
and divided into north and south lake by a 4.7 km railway. The main water source 
for the BMR came from Kurau River and Merah River, where Kurau River system 
created the largest catchment area (323.0 km2) and the highest elevation of about 
861 m above the sea level. This is followed by the Jelutong River (7.1 km2) and 
Merah River (4.25 km2) and Selarong River (3.1 km2) (Ismail & Najib 2011).
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Figure 1: Sampling sites in BMR, Perak (Source: Google Map).

A total of 23 sampling stations were set up, which covers both the South 
and North of BMR. However, certain areas on the north side of the lake were not 
accessible due to aquatic vegetation. All sampling was conducted during the inter-
monsoon season in April 2018. A total of 23 homogenised triplicates sediment 
samples were collected from these sampling stations. The choice of sampling 
station was made based on several criteria such as it should represent the general 
condition of the lake section. At the same time, it also should indicate the possible 
anthropogenic activities around the BMR, such as plantation, residential area, 
tourism hot spot, fisherman jetty and source of water into the BMR from  Kurau 
River and Merah River.

The upper layer of sediment (0 cm–5 cm) was taken using an Eakman 
grab in triplicates and transferred into a plastic container to be homogenised 
and later stored in double layers plastic bag. The sediments were temporarily 
stored in the icebox at 4°C before transferred to the laboratory. In the laboratory, 
the sediment was transferred into a separate plastic tray and left to dry at room 
temperature until constant weight.

In the laboratory, determination of sediment parameters such as pH, redox 
potential, salinity, and electroconductivity was conducted by mixing the sediment 
with deionised water in ratio 1:10. The slurry mixture was placed on a magnetic 
stirrer for 30 min and left to stand for an hour before the measurement of the 
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parameter was taken using Eutech Cyberscan Multiparameters CD 650 and PCD 
650. All of these sediment parameters were taken in triplicates. Before sampling,  
all the measurement devices were calibrated according to the manufacturer 
manual. Total organic matter (TOM) of sediment samples were determined using 
a lost on ignition (LOI) technique. By calculating the difference between the dry 
weight of the sediment sample pre and post ashing in a muffle furnace at 550°C 
for 4 h (Radojevic & Bashkin 2006).  

For analyses of arsenic, the sediment samples were crushed into a fine 
powder using a  porcelain mortar and pestle, which pre-washed with 10% Nitric 
acid (HNO3). The digestion method suggested by Radojevic and Bashkin (2006) 
and EPA Method 3050a (EPA 2007) was used in this study. The aqua regia 
solution was prepared by mixing 150 mL of HCI solution (130 mL concentrated 
HCI + 120 mL of mili-Q water) with 50 mL of concentrated  HNO3. The samples 
were placed in the digestion tube and immersed overnight in 5 mL of aqua 
regia solution. Then the samples were digested in duplicate using a microwave 
digester. The temperature is set at 180°C for 9.5 min and allowed to cool at room 
temperature in the microwave. The digested samples were filtered with a 0.45 µm 
Whatman filter paper into a 50 mL volumetric flask. The total of 0.25 M HNO3 is 
added up the mark before analysed using Perkin Elmer Optima 5300 ICP-OES 
for the presence of arsenic. The precision of the analyses was measured using 
certified reference material CRM016 for freshwater sediment and the percentages 
of recovery ranged from 94.83%–106.38%.

The geoaccumulation index (Igeo) was developed by Muller (1969) to  
assess the level of heavy metal and metalloid elements in the sediment by 
comparing the status of the current concentration with the pre-industrial level. 
Since then, this index has been successfully used by many researchers worldwide 
to evaluate the status of sediment as it easy to calculate, and the result can be 
straightforwardly interpreted by the public and regulation bodies (Alves et al. 
2018; Islam et al. 2018; Rajeshkumar et al. 2018; Shafie et al. 2013). The index is 
calculated based on the equation:

Igeo = Log2 [ Ci / (1.5 Cri) ]

where:

Ci is the concentration of metals in sediment (mg kg–1);
Cri is a pre-industrial geochemical concentration or reference value of the heavy 
metal in particular area;

Factor 1.5 is used to reflect the possible fluctuation of the element in the 
background value as well as minimal anthropogenic influences or input. Based on 
the Igeo  indices, it can be classified into seven classes as shown in Table 1.
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Table 1: The degree of metal enrichment based on Geo-accumulation (Igeo) classification.

Igeo value Class Designation of sediment quality

Igeo ≤ 0 0 Unpolluted 

0 ≤  Igeo  ≤ 1 1 Unpolluted to moderately polluted 

1 ≤ Igeo  ≤ 2 2 Moderately polluted 

2 ≤ Igeo  ≤ 3 3 Moderately  to strongly polluted 

3 ≤ Igeo  ≤ 4 4 Strongly polluted 

4 ≤ Igeo  ≤ 5 5 Strongly to extremely polluted 

Igeo  > 6 6 Extremely polluted 

Enrichment factor (EF) is another useful index for the assessment of 
the enrichment level of metals and metalloid in sediment. Initially, this index was 
developed to assess the origin of elements in the atmosphere, seawater, and 
precipitation. Nowadays, this index has been successfully applied for the study 
of soils, marine and freshwater sediments (Goher et al. 2014; Shafie et al. 2013; 
Varol 2011). This universal index is a relatively simple and easy way to evaluate 
the enrichment degree and allow comparison of contamination of different 
environmental media (Nowrouzi & Pourkhabbaz 2014). At the same time, this 
index can be used to confirm whether heavy metals and metalloids in sediment 
are due to anthropogenic activities (Jahan & Strezov 2018). Enrichment factor can 
be classified into five categories as shown in Table 2. Calculation of enrichment 
factor was conducted according to the equation:

EF = (Cn / Cref) / (Bn / Bref)

where:

Cn = concentration of a measured element on the study site (mg kg–1);
Cref = concentration of the measuring element in the reference environment.  

Can be based on the earth’s crust, the country average, etc. (mg kg–1);
Bn = concentration of reference element of the study site (mg kg–1);
Bref = concentration of the reference element in the reference environment  

(mg kg–1).

Table 2: The degree of metal enrichment based on the enrichment factor (EF) classification.

EF classification Degree of enrichment

< 2 Depletion to mineral enrichment 

2 ≤ EF < 5 Moderate enrichment  

5 ≤ EF < 20 Significant enrichment

20 ≤ EF < 40 Very high enrichment 

EF > 40 Extremely high enrichment 
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Commonly used elements for normalisation are Fe, Sn, Mn or Al (Habib 
et al. 2018; Jahan & Strezov 2018; Shafie et al. 2013; Zahra et al. 2014). The 
normalisation is important to differentiate the trace element source that originates 
from anthropogenic activities and natural means. In this study, the earth’ crust 
concentration of ferum which is 50000 mg kg–1 was used as the element of 
normalisation for the calculation of geo-accumulation index and enrichment factor 
(Haris & Aris 2013). This is because nonexistence comparable baseline research 
has been conducted in the study area. Fe was used as the element of normalisation 
due to several reasons: (i) it is uniformly distributed in the natural environment 
and the fourth major element in the earth’s crust; (ii) commonly associated with 
fine solid surfaces; (iii) it is geochemistry is alike to those many trace elements 
(Kadhum et al. 2015; Varol 2011). 

Normally, if the value of enrichment factor is close to or < 1, this reflects 
that the primary source of trace elements is from a natural source such as crustal 
or marine environments. However, if the enrichment factor is larger than 1, this 
shows that the main source is from anthropogenic activities (Adebola et al. 2018; 
Habib et al. 2018; Jahan & Strezov 2018).

RESULTS

Table 3 summarised the descriptive statistic for sediment and water physico-
parameters collected in BMR during the sampling period. The value of the mean 
was determined with standard deviation (SD) in Table 3. All parameters are 
measured in triplicate except for arsenic and ferum concentration (duplicate).

Table 3: Descriptive statistics for sediment and water in BMR.

Matrix Mean SD Max Min CV%

Sediment pH 4.42 0.71 7.38 3.52 16.06

Conductivity (µS cm–1) 205.70 164.07 727.20 11.50 79.76

Redox potential (mV) 121.77 42.45 173.60 –46.00 34.86

Organic matter (%) 25.35 9.34 46.15 16.30 36.84

Iron (Fe) mg kg–1 1995.10 593.82 3206.39 893.93 29.76

Arsenic (As) mg kg–1 4.302 2.43 12.16 1.07 56.49

Water pH 6.47 0.60 7.58 5.47 9.27

Conductivity (µS cm–1) 25.35 3.80 29.29 17.31 15.00

Redox potential (mV) –62.53 34.61 59.77 –62.53 55.35

Dissolved oxygen (mg L–1) 6.85 0.72 8.05 5.27 10.51
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The mean water pH in BMR is recorded as slightly acidic (6.47 ± 0.60) 
and ranged from slightly alkaline at S19 (pH 7.58 ± 0.21) to acidic at S23 
(pH 5.47 ± 0.23) with a coefficient of variation (CV) of 9.27 which indicates 
the low variability of water pH in BMR. S5 recorded the highest conductivity 
(29.29 ± 1.35 µS cm–1), TDS (24.34 ± 1.15 ppt). Meanwhile, the lowest 
conductivity (17.31 ± 0.51 µS cm–1) and TDS (15.18 ± 0.51 ppt) are recorded 
at S1. Analysis of sediment parameters shows that the mean pH of sediment is  
recorded as acidic (4.46 ± 0.77). S3 has the maximum pH (7.34 ± 0.38) and 
at the same time recorded the lowest redox potential (–47.87 ± 5.92 mV). The 
lowest pH is recorded at S19 (3.52 ± 0.0). S19 also has the highest redox 
potential (173.53 ± 0.06 mV), conductivity (727.73 ± 1.19 µS cm–1). The highest 
organic matter was found at S18 (46.15%) while the lowest is at S4 (16.3%).  
Fe was highest at S16 (3162.95 ± 61.43 mg kg–1) and lowest at S22 (963.21 ±  
97.98 mg kg–1). 

The descriptive statistic shows that the mean of total arsenic 
concentration in BMR was 4.302 ± 2.43 mg kg–1 with a CV of 56.49%. The 
high value of CV indicates a high variation concentration between the sampling 
stations. This is comprehensible by an apparent disparity in the total arsenic 
concentration between the highest and lowest, which was 10.88 ± 1.81 mg kg–1 
at S16 and 1.83 ± 1.0805 mg kg–1 at S10. The second highest concentration 
of arsenic was recorded at S18 (9.22 ± 1.70 mg kg–1). In general, the mean 
As concentration in this study (4.302 ± 2.43 mg kg–1) was below the ISQGs  
(5.9 mg kg–1). However, three stations (i.e., S1, S16 and S18) were found to 
have exceeded the guideline. Kruskal-Wallis H test on the sediment samples  
reveals that the total arsenic concentration among sampling stations was 
significantly different (X 2 (22) = 36.772, P < 0.05). The present finding revealed 
a trend where most of the highest arsenic concentrations were distributed in the 
southern part of the lake especially at S13, S14, S16, S17 and S18 (Fig. 2).

This area is marked with dead trees, highly infested with submerged 
vegetation (Capomba sp.) and black colored sediment due to the high presence 
of organic matter. In the northern part of the lake, only one station (S1) recorded 
a high concentration of arsenic. Spearman rank analysis shows a positive 
correlation between the level of organic matter with the concentration of arsenic  
(rs (46) = 0.692, p < 0.05). However same analysis shows negative correlation with 
pH value (rs (46) = –0.367, p < 0.05). The values of Igeo and EF for each sampling 
station are shown in Figs. 3 and 4. The mean values of Igeo and EF were recorded 
at 0.28 ± 0.65 and 54.74 ± 22.23, respectively. 

A comparison between the two indices shows a high disparity where 
the value of EF displays a higher classification of arsenic enrichment in BMR 
sediment compared to Igeo. The EF shows that 21.7% of sampling stations in BMR 
are classified as a very high enrichment of arsenic such as at S5, S6, S10, S11 
and S12 while the rest of the stations (78.3%) are classified as extremely high 
enrichment. Most of the stations with extremely high enrichment classification 
were recorded at the southern part of BMR such as S17 (97.29), S16 (85.96), S18 
(82.37) and only S1 (93.06) represents the northern part of BMR. However, based 
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on Igeo assessment, S6, S10, S11 and S12 were considered unpolluted and S5 is 
considered as unpolluted to moderately polluted. In general, Igeo index revealed 
that 34.8% of stations in BMR were considered unpolluted, 52.2% as unpolluted 
to moderately polluted and 13.0% as moderately polluted.
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Figure 2: Concentration of arsenic in a sampling station in BMR. Threshold limit according 
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Figure 4: Geoaccumulation index of  arsenic in the sediment of BMR.

DISCUSSION

High concentration of arsenic in the southern part of BMR particularly at S16  
(10.88 ± 1.81 mg kg–1), S18 (9.22 ± 1.70 mg kg–1), S14 (6.47 ± 1.76 mg kg–1), 
S13 (6.26 ± 1.8 mg kg–1) and S17 (5.66 ± 1.25 mg kg–1) can be explained due to 
the presence of anthropogenic activities in the area. Nevertheless, the level of 
arsenic in BMR is lower compared to Lake Bera, Pahang (59.89 ± 4.00 mg kg–1) 
(Gharibreza et al. 2013). Other lakes also recorded a higher value of arsenic such 
as lake Taihu, China (11.1 mg kg–1) (Qin et al. 2016) and Lake Bosten, China 
(16.99–89.16 mg kg–1) (Liu et al. 2015). The agricultural sector that is surrounding 
the lake basin constitutes a vast area such as rubber plantation (98.9 km2), palm 
oil (48.3 km2) and paddy field (15.5 km2) (Hidzrami 2010). This is believed to be 
one of the main factors that contribute to the enrichment of arsenic in BMR. 

Trace elements are known to accumulate in the sediment through 
chemical and physical binding or by adsorption onto organic and inorganic 
particles due to these anthropogenic activities (Rieuwerts 2015; Rieuwerts 
et al. 1998; Sakan et al. 2012). Fertilizers, pesticides and animal feeding which 
contain arsenic are widely used in the agriculture sector and can be carried into 
the lake through surface runoff during precipitation. Some of the fertilizer might 
contain monosodium and disodium methylarsonate which can influence the pH 
of sediment and eventually affect the retention, mobility and bioavailability of 
arsenic (Gorny et al. 2015; Hooda 2010; Kadhum et al. 2015). pH is regarded as 
one of the prominent factors that governed the behaviour of arsenic in sediment.  
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For an element that exists as anion such as arsenic, a decrease in pH will increase 
the sorption process because soil colloids are increasingly acquired an additional 
positive charge (Hooda 2010). In this part of the lake, situated a four-star lakefront 
resort and luxury private residential houses. Thus, there is a possibility that the 
greywater from these places being released into the lake and act as a nonpoint 
source of pollutant-containing arsenic. 

 Meanwhile, a high concentration of arsenic in S1 is attributed to the 
presence of angler jetty where residue from boats and oil spills might contain 
arsenic and ultimately accumulate in the sediment (Tornero & Hanke 2016). This 
is shown by the high value of EF (93.06) and Igeo (1.02). It is important to note that 
S1 also contains high organic matter (39.37%). The same condition could also be 
observed in the southern part of the lake where most stations with high arsenic 
concentration similarly recorded a higher organic matter as represented by S18 
(46.15%), S16 (43.11%), S17 (38.35%) and S15 (30.88%). This is proven by the 
Spearman rank analysis which shows a positive correlation between the level of 
organic matter with the concentration of arsenic. The organic matter composed 
of three main substances: (i) living organism, (ii) soluble biochemicals (i.e., 
carbohydrates, organic acids, protein, amino acids and polysaccharides), and 
(iii) insoluble humic materials. Sorption of the trace elements can occur through 
acid functional groups like amino groups, carboxylic, phenolic and alcoholic which 
originated from the biochemical and humic substances in the organic matter (Bauer 
& Blodau 2006; Draszawka-Bolzan 2015; Gorny et al. 2015). Organic matter can 
alter the solubility of potentially toxic elements, altering the distribution between 
the oxidised and reduced form of these elements (Hooda 2010; Rieuwerts et al. 
1998; Shtangeeva 2005). Organic matters are redox reactive which can facilitate 
the release and redox transformation of less mobile solid-phase As(V) into As(III) 
which is more soluble and mobile. As(III) then can diffuse upward to be released 
into the water collum or re-precipitate in the oxic environment (Galloway et al. 
2018). Thus, leads to a substantial increase of arsenic enrichment in the sediment 
surface.

Another factor that might contribute to the high level of arsenic in BMR 
is the presence of high concentration of ferum. This study indicates that the soil 
in BMR contains a high concentration of ferum. A previous study on the level of 
Fe in water collum in BMR also revealed that Fe concentration is beyond the 
permissible limit due to the type of soil in this area, which is primarily composed of 
laterite that are known to be rich in ferum (Shuhaimi-Othman et al. 2010). Fe(III) 
oxides are known to have a high affinity for As species because both As(III) and 
As(V) are strongly chemisorbed especially with decreasing pH (Hooda 2010; 
Wang & Mulligan 2006). 

The high disparity between the value Igeo and EF was predictable as 
many authors also reported the high disparity of EF and Igeo (Haris & Aris 2013; 
Loska et al. 2003; Nowrouzi & Pourkhabbaz 2014; Shafie et al. 2013; Sukri et al. 
2018). This is due to the choice of reference element during the calculation 
of EF. Therefore, usage of average crust concentration may lead to over or  
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underestimation of EF. The EF values show that as the values of metals vary the 
classification of contamination levels vary. However, this is not the case when 
dealing with the Igeo where the classification of contamination does not always vary 
as the contents of metal vary. Thus usage of Igeo is more consistent and preferable 
(Ghrefat et al. 2016; Ghrefat et al. 2011). Nevertheless, this index is still important 
in providing an easy assessment of sediment quality.

CONCLUSION

As the oldest man-made reservoir in Peninsular Malaysia, BMR can be used as 
an example of the long term impact of anthropogenic activities on the arsenic 
contamination on the surface sediment of other freshwater reservoirs in this 
country.  The result of this study revealed that the enrichment of arsenic in surface 
sediment of BMR was concentrated at the south of the lake where most of the 
anthropogenic activities could be observed. Based on the result of this study, 
Igeo is more appropriate and reliable to be used as a tool for classification of the 
enrichment level of arsenic in BMR compared to EF as EF is highly influenced by 
the concentration of the reference element used. By providing this information, it 
will help the authority to take a proactive and corrective measure to reduce the 
influx of pollutant-containing arsenic in the reservoir in the future.
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