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protein.

 • Zymogram analysis revealed the presence of two active cellulolytic 
proteins in the gut extract.
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Abstract: Insects of the taxonomic order Coleoptera are recognised for considerable 
cellulolytic activity in their digestive fluid. The cellulolytic activity of the gut fluid in Hoplasoma 
unicolor, a member of Coleoptera, however, remains unexplored. In this study, we, for the 
first time, report the qualitative and quantitative analysis of cellulolytic activity in the digestive 
fluid of this insect. The cellulolytic endo-1,4-β-D-glucanase activity was confirmed in the 
supernatant of the insect’s digestive fluid by agar plate assay using carboxymethyl cellulose 
as the substrate. To determine the optimum pH, enzyme activity was further assessed in an 
acidic pH range of 5 to 6, and the highest activity was observed at pH 5.3. For quantitative 
analysis, endoglucanase activity was measured using 3,5-dinitrosalicylic acid method which 
revealed that the specific activity of the gut sample was 0.69 (±0.01) units per mg of protein. 
For further characterisation of the cellulases in the sample, SDS-PAGE and zymogram 
analysis were carried out. Two active cellulolytic bands were detected on the zymogram 
suggesting the presence of two distinct endoglucanases which completely disappeared 
upon heating the sample at 55°C. Our study, therefore, highlights prospect of the gut fluid 
of H. unicolor as an important source of cellulase enzymes that merits further investigations 
into their extensive characterisation for potential industrial applications.   

Keywords: Cellulolytic Activity, Endo-1,4-β-D-Glucanase, Beetle, Insect Gut Fluid, Insect 
Cellulase, Carboxymethyl Cellulose, Zymography
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INTRODUCTION

Cellulases are hydrolytic enzymes that catalyse the cleavage of 1,4-β-glycosidic 
bonds between glucose residues present in cellulose, the most abundant 
biopolymer produced on earth and the major constituent of agricultural and 
industrial wastes (Bayer et al. 1998; Dashtban et al. 2010). Consequently, 
substantial efforts are being made during the past few decades into prospecting 
for novel cellulolytic enzymes and elucidation of their catalytic properties so 
that the enzymes could be employed in many important bioprocesses, most 
particularly in: (1) the production of cost-effective and sustainable biofuels from the 
cellulosic and lignocellulosic biomass, (2) efficient and ecofriendly management 
of waste disposal and (3) industrial processes specially the textile, paper, food 
and detergent industries (Bayer et al. 2007; Jayasekara & Ratnayake 2019;  
Phitsuwan et al. 2013). The cellulase enzymes refer to three distinct types of 
cellulolytic hydrolases, e.g., endo-1,4-β-D-glucanase (endoglucanase; EC 3.2.1.4), 
exo-1,4-β-D-glucanase (cellobiohydrolase; EC 3.2.1.91 and 3.2.1.176), and 
β-glucosidase (EC 3.2.1.21) (Okano et al. 2014). The endoglucanase catalyses 
hydrolysis of soluble and insoluble β-(1,4)-glucan substrates, either directly on 
the polymer and/or shorter (poly)-oligosaccharides, both internally as well as 
from reducing and nonreducing ends in a nonprocessive or processive manner 
to produce oligosaccharides of various lengths (Girfoglio et al. 2012; Hobdey 
et al. 2015). Exoglucanases progressively hydrolyse cellulose at the reducing 
and non-reducing ends to release cellobiose moieties. Whereas β-glucosidases 
catalyse the final step: hydrolysis of the products generated by both endo- and 
exo-glucanases, i.e., soluble cellulodextrins and cellobioses to produce glucose. 
Although complete degradation of cellulose into glucose requires synergistic  
action among the three hydrolases, endoglucanase is believed to be the most 
important of the three (Annamalai et al. 2016). These cellulolytic hydrolases 
are commonly referred to as carboxymethylcellulase or CMCase, since 
carboxymethylcellulose (CMC) is the substrate most widely used for the 
determination of functional cellulase activity in experimental procedures (Ali et al. 
1995).

The endoglucanase enzymes characterised so far are mostly those of 
microbial and plant origin. This enzyme activity has long been believed to be limited 
to only bacteria, fungi and plants. While activity was also detected in the digestive 
fluid of lower animals such as the insects, it was totally attributed to the microbial 
symbionts in the insect gut until 1998 when Watanabe et al. first described the 
identification of an endo-1,4-β-D-glucanase gene in the termite Reticulitermes 
speratu. Today, insects from at least 20 families such as Acrididae, Buprestidae, 
Amphisbatidae, Tenthredinidae, etc. are known to produce their own cellulolytic 
enzymes (Su et al. 2013). Insects, therefore, are regarded as very promising 
candidates to search for novel cellulases. The highly adapted phytophagous 
insects appear to be the most important species in this regard since they feed on 
very fibrous and lignocellulose-rich plant tissues (Oppert et al. 2010). 
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In the present study we sought to evaluate cellulolytic activity in gut 
fluid of the beetle Hoplasoma unicolor, a phytophagous insect of the taxonomic 
order Coleoptera. Previously, a number of beetles have been shown to possess 
considerable amount of cellulolytic activity in their gut or head fluid (Table 1).  
Su et al. (2013), for example, investigated cellulolytic activities in the gut fluids 
of 54 insect species from seven orders and detected highest CMCase activities 
in the insects of Coleoptera and Orthoptera. Other groups also reported high 
endoglucanase activity in the gut fluids of several other beetle species (Table 1). 
Beetles, therefore, are considered to be attractive candidates to prospect for novel 
cellulolytic enzymes with remarkable catalytic potential. 

We herein report the determination of endo-1,4-β-D-glucanase activity 
in the digestive fluid of adult H. unicolor, a beetle that feeds on foliage of herbs 
(Mathew et al. 2005). This beetle was found abundantly feeding on its host plant, 
Clerodendrum villosum, a tomentose shrub (Hazmi et al. 2019). To our knowledge, 
cellulolytic activity in the gut fluid of this beetle was not reported previously. 
Therefore, qualitative and quantitative measurement of the enzyme activity was 
carried out on CMC using the partially purified gut fluid prepared from this insect. 
SDS-PAGE and zymogram analyses were also performed to further understand 
the multiplicity of the active cellulolytic proteins present in the enzyme extract. 

MATERIALS AND METHODS

Insect Collection

This study investigated cellulolytic activity in the gut fluid of the beetle H. unicolor. 
Several beetles are already known to possess notable amount of cellulase enzymes 
in their gut fluid. Being a phytophagous beetle, H. unicolor is also speculated to 
produce considerable amount of cellulase enzymes in its gut which still remains 
unstudied. Hence in the present study, twenty adult beetles, ~1.2 cm in length, were 
collected from the host plant C. villosum near the campus of Mawlana Bhashani 
Science and Technology University, Bangladesh in the month of September 2019. 
The insects were actively feeding on or in close proximity to the host plant at the 
time of collection (Fig. 1a). Insects were kept on the leaves during transportation 
to the laboratory and placed in ice for 10 min before dissection. 

Dissection and Preparation of Digestive Extract for Enzyme Assays

Dissections of the insects were performed on ice. Insect guts were removed 
and collected in microcentrifuge tube emerged in ice. The dissected guts were 
combined, cut into small pieces, homogenised by vortexing and centrifuged at 
10,000 rpm for 10 min at 4°C. The 130 µL of supernatant was collected and 
transferred to a fresh microcentrifuge tube and stored at −20°C until it is ready 
to use. This gut sample has been designated hereafter as gut extract or enzyme 
extract.
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Qualitative Endoglucanase Assay

Cellulolytic activity of the gut extract was determined essentially as described 
previously (Hossain et al. 2020). Briefly, 100 µL of the gut extract was placed 
inside wells in agar media (pH 5, 5.3 and 6) supplemented with 1% (w/v) CMC 
(Sigma-Aldrich) in 0.1 M sodium acetate buffer. A control plate was also included 
where gut extract was replaced with the same volume of buffer only. After overnight 
incubation at 37°C, the plates were stained with 0.1% Congo red solution for  
5–10 min and destained with 0.1M NaCl for 10–15 min. Formation of clear zone 
was considered positive result for endoglucanase activity.

Protein Estimation

Amount of proteins in the gut extract was estimated by Lowry protein assay method 
using bovine serum albumin (BSA) as standard (Lowry et al. 1951). 

Electrophoresis

The enzyme extract was examined by sodium dodecyl sulphate-polyacrylamide 
gel electrophoresis (SDS-PAGE) following the method as described by Laemmli 
(1970). Briefly, aliquots containing samples equivalent to 0.8 µg and 4 µg of protein 
were applied to pre-casted gel and electrophoresis was conducted with running 
buffer (25 mM Tris, 192 mM glycine with 0.1% SDS) at constant voltage of 110 V. 
Proteins were stained with Coomassie Brilliant Blue R-250.

Zymogram Analysis

We carried out zymogram analysis to detect the specific proteins having cellulolytic 
activity in the gut extract as described in a previous work (Schwarz et al. 1987) 
with small modifications as in Uddin et al. (2012). Gel was prepared including 
0.1% CMC before polymerisation of resolving gel. Gut sample (0.8 µg or 4 µg of 
protein) containing 1× loading buffer (50 mM Tris HCl pH 6.8, 1.5% SDS, 0.02% 
bromophenol blue, 10% glycerol and 2% β-mercaptoethanol) was loaded onto 
the gel, with or without a pre-heat treatment at 55°C for 30 min. Electrophoresis 
was conducted at 4°C at 110 V. After electrophoresis, gel was washed five times  
(5–6 min each) in 50 mL of washing buffer (0.1 M sodium succinate pH 5.3) 
at room temperature followed by a final wash for 30 min with the same buffer.  
Gel was stained with 0.1% Congo red solution for 10–15 min and destained using 
1 M NaCl until clear depolymerisation bands became visible.

Quantitative Endoglucanase Assay

Cellulase activity was quantified using a modified 3,5-dinitrosalicylic acid (DNSA) 
assay (Miller 1959). Enzyme extract (20 µg) was mixed with 235 µL CMC  
(1% CMC sodium salt in 0.1 M Na-acetate buffer pH 5.3). After incubation at 37°C 
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for 45 min in water bath, 450 µL of DNS was added to stop the reaction followed 
by heating in boiling water bath for 10 min and then 40% of 230 µL of Rochelle 
salt was added. Absorbance was measured at 540 nm by UV spectrophotometer 
against a reaction blank in which DNS solution was added before the enzyme  
extract. A standard curve of absorbance against glucose (50–400 µg) was 
constructed to calculate the amount of reducing sugar released (glucose 
equivalents) during the assay. One unit of cellulolytic activity was defined as 
the amount of enzyme required to produce 1 μmol of reducing sugar (glucose 
equivalents) per min at 37°C at pH 5.3. Specific activity is described as units per mg 
of protein. The experiment was done in triplicate and the mean value is presented.

RESULTS AND DISCUSSION

Endo-1,4-β-D-Glucanase Activity of the Gut Extract

This work aimed at assessing the endo-1,4-β-D-glucanase activity in digestive 
fluid of the phytophagous beetle H. unicolor. To this end, we collected digestive 
fluid from 20 adult insects and obtained its protein fraction by centrifugation. This 
partially purified gut extract was examined for the presence of endoglucanase 
activity in an agar plate assay using CMC as the substrate. A distinct zone of 
clear halo was formed in the agar media when spotted with the gut extract that 
clearly indicated depolymerisation of CMC in the media confirming presence of 
cellulolytic proteins in the sample [Figs. 1(a) and 1(b)]. With several beetles from 
the order Coleoptera are already known to have cellulolytic activity in its digestive 
fluid (Table 1), our study, therefore, makes a new inclusion, H. unicolor, to that 
list. Although most of the previous studies didn’t confirm whether the respective 
enzymes are encoded within the insect genome or of microbial origin (Geib et al. 
2010; Oppert et al. 2010; Rehman et al. 2009; Sami & Shakoori 2008; Su et al. 
2013; Uddin et al. 2012). In our study as well, whether the endoglucanase activity 
is endogenous or, secreted from microbial symbionts, or, contributed by both, 
needs to be investigated by more extensive analysis in the future. In the digestion 
of recalcitrant plant matters, enzymes from both the insects and the symbionts 
are required for complete breakdown of the polymers, e.g., cellulose into simple 
sugars (Shelomi et al. 2020). Availability of the genome sequence of the beetle 
might also provide us gaining more insights into its endogenous cellulases. 

In previous works, the endoglucanase activity assay of the gut fluid of 
Coleoptera insects was mostly carried out at pH ~5 to 6 (Geib et al. 2010; Oppert 
et al. 2010; Su et al. 2013; Vatanparast et al. 2014; Willis et al. 2010). Whereas in 
a study with Podontia quatuordecimpunctata, an insect from the same family as 
H. unicolor, the enzyme assay was also performed at pH 5.3 (Uddin et al. 2012). 
Therefore, to determine the optimum pH for endoglucanase activity of the enzyme 
extract, we initially decided to perform the agar plate assay at three different pH 
ranging from 5 to 6. Area of clear halos formed on the agar plates, which indicates 
the enzyme intensity (Hossain et al. 2020), was visually inspected. We found that 



Mohammad Mosleh Uddin et al.

62

the endoglucanase activity of the gut fluid was highest at pH 5.3, whereas the 
activity decreased below and above this pH (i.e., pH 5 and 6) with the smallest 
zone of clearance formed at pH 6. Since lower enzyme activity was found on either 
side of pH 5.3, therefore, the endoglucanase activity was not examined at other 
pH ranges. Hence, it appears from the above findings that the cellulolytic enzymes 
present in the gut sample exert maximum activity at acidic pH. This finding is 
consistent with those reported in a number of previous research. For example, 
the endoglucanses from gut fluid of a number of beetles and termites as well as 
bacteria and fungi showed highest activity at slightly acidic pH mostly in the range 
of pH 5 to 6 (Busch et al. 2018; Hatefi et al. 2017; Tokuda et al. 1997; Zhang  
et al. 2011). Insect cellulases with optimum activity at alkaline pH were also 
reported though (Sami & Shakoori 2008; Willis et al. 2011). 

(b) (c)

(a)

Figure 1: Endoglucanase activity of the digestive fluid from H. unicolor adults. (a) Beetles 
on its host plant at the time of collection; (b) and (c) Screening endo-1,4-β-D-glucanase 
activity in the gut extract prepared from digestive fluid of the beetle. Wells were made in 
agar media containing CMC and loaded with either buffer solution (b) or the gut extract (c). 
Clear zone was only produced by the gut extract indicating the presence of endoglucanase 
activity.
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SDS-PAGE and Zymogram Analysis

SDS-PAGE analysis of the digestive extract was carried out to examine the purity 
and number of proteins present in the partially purified extract and to reveal their 
molecular weight (MW). The gut extract was used at two different concentrations, 
0.8 µg or 4 µg of protein, in the analysis. Five distinct protein bands were detected 
at both concentrations with the MW ranging from ~25 to 65 kDa (Fig. 2), suggesting 
that the MW of the cellulolytic proteins in the sample lies within this range. Detection 
of only five protein bands also indicates that the gut sample could be fairly purified. 

120 KDa

85 KDa

20 KDa

35 KDa

50 KDa

Ladder 0.8 μg 4 μg

Figure 2: Separation of proteins of the gut extract by SDS-PAGE. Samples containing 
0.8 µg or 4 µg of proteins were loaded onto the gel and, after electrophoresis, stained with 
Coomassie Brilliant Blue. Each of the protein bands detected is indicated by an arrow-head.

To find out which of the five proteins were the active endoglucanase 
enzymes in the digestive extract, we performed a zymogram analysis using CMC 
as the substrate. Two prominent bands of clearance due to the degradation of 
CMC were observed that were in close proximity to each other which suggested 
the presence of at least two endoglucanase enzymes in the gut sample (Fig. 3). 
When the sample was pre-heated at 55°C for 30 min before loading onto the 
gel, no hydrolysis band was detected indicating complete loss of enzyme activity 
due to heat inactivation; although a number of insect cellulases were previously 
demonstrated to be enzymatically active at similar temperatures (Sami & Shakoori 
2008; Tokuda et al. 1997; Watanabe et al. 1997). Together, the results of SDS-
PAGE and zymogram analysis suggested that only two of the five proteins 
detected in the gut sample possessed endoglucanase activity in the experimental 
conditions used. Detection of multiple cellulase enzymes in insect gut sample is 
not uncommon. Similar to our findings, two cellulolytic protein bands were reported 
in other insects such as Tribolium castaneum, Syrbula admirabilis and Tenebrio 
molitor (Oppert et al. 2010; Rehman et al. 2009). Some studies also described 
the detection of more than two cellulolytic proteins in zymography (Su et al. 2013; 
Uddin et al. 2012; Willis et al. 2010 ).
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The two active enzymes detected in the zymography were very close to 
each other having similar molecular masses. Of the five proteins detected in SDS-
PAGE, on the other hand, only the two at bottom of the gel were closely placed. 
Taken together, we assume that the proteins which were found in close vicinity in 
SDS-PAGE analysis with MW of ~25 and ~30 kDa, might be the endoglucanases. 
The MW of these two enzymes is similar to those reported in various other insects 
as well as in other organisms. For example, Rhagium inquisitor, Dissosteira 
carolina, S. admirabilis, T. molitor and others were documented to have cellulases 
in their digestive fluids with the MW lying in the range of 20 to 35 kDa (Oppert  
et al. 2010; Rehman et al. 2009; Willis et al. 2010). 

81 2 3 4 5 6 7

Figure 3: Zymogram analysis for detection of the active endoglucanases in the digestive 
fluid of adult H. unicolor. Proteins in the sample (~800 ng) were separated by electrophoresis 
on gel containing CMC, and the active endoglucanases were subsequently visualised 
by staining with Congo red. Clear bands in the gel indicate cellulolytic activity due to the 
degradation of CMC. Arrow-heads indicate the position of the active enzymes. Lanes 1 and 
3: 4 µg sample pre-heated at 55°C. Lanes 2 and 4: 4 µg sample without pre-heat treatment. 
Lanes 5 and 7: 0.8 µg sample pre-heated at 55°C. Lanes 6 and 8: 0.8 µg sample without 
pre-heat treatment.

Quantitation of Endo-1,4-β-D-Glucanase Activity

Finally, to determine specific activity, we carried out a quantitative analysis of 
endoglucanases present in the enzyme extract towards CMC. The specific  
enzyme activity was measured as 0.69 (± 0.01) U/mg of protein which seems 
quite high as compared to those reported in the insects of the same order  
(Table 1) and in other insects as well (Oppert et al. 2010). The endoglucanase 
activity in the members of Coleoptera has been reported to vary over a very wide 
range, from as little as 0.01 to as much as 2.80 U/mg (Table 1). The highest activity 
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was found in the beetle Morimus funereus (Dojnov et al. 2013). Direct comparison 
of the activities among various endoglucanases is not, however, fully coherent due 
to the different experimental conditions used in the studies. 

CONCLUSION

Findings of this paper represent the first description and preliminary 
characterisation of the cellulolytic activity in the digestive fluid of H. unicolor. 
The endo-1,4-β-D-glucanases of the gut fluid showed prominent efficiency in 
digestion of cellulose with specific activity higher than those of most other insects.  
Further research for purification and complete characterisation of the 
endoglucanases are, therefore, needed to understand their origin and catalytic 
efficacy which can provide foundation for development of an efficient and 
inexpensive system for biofuel production and waste management based on the 
hydrolytic enzymes of insect digestive fluid.
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