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Abstrak: Semenjak sedekad yang lalu, bidang biologi sel stem menjadi tarikan utama dalam kalangan penyelidik kerana potensi terapeutiknya yang luas. Sel stem adalah satu kelas sel tak terbeza yang berupaya membeza kepada sel jenis khusus. Sel stem boleh dikelaskan kepada dua jenis iaitu sel-sel stem dewasa (tisu dewasa) dan sel-sel stem embrio (embrio yang terbentuk semasa fasa blastosis dalam pembentukan embrio). Artikel ini akan membincangkan mengenai dua jenis sel stem mesenkim dewasa; sel stem gigi dan sel stem amnion dari segi keturunan pembezaan, bilangan pemindahan dan kajian model haiwan. Sel stem amnion mempunyai bilangan keturunan pembezaan yang lebih tinggi berbanding sel stem gigi. Sebaliknya, peringkat bilangan sub-kultur sel stem gigi adalah lebih banyak berbanding sel stem amnion. Untuk pertumbuhan semula tisu, sel stem amnion mengambil masa yang paling singkat bagi penjanaan semula berbanding sel stem gigi, berdasarkan kajian model haiwan.

Kata kunci: Sel Stem Gigi, Sel Stem Amnion, Keturunan Pembezaan, Peringkat Bilangan Sub-Kultur

Abstract: In the past decade, the field of stem cell biology is of major interest among researchers due to its broad therapeutic potential. Stem cells are a class of undifferentiated cells that are able to differentiate into specialised cell types. Stem cells can be classified into two main types: adult stem cells (adult tissues) and embryonic stem cells (embryos formed during the blastocyst phase of embryological development). This review will discuss two types of adult mesenchymal stem cells, dental stem cells and amniotic stem cells, with respect to their differentiation lineages, passage numbers and animal model studies. Amniotic stem cells have a greater number of differentiation lineages than dental stem cells. On the contrary, dental stem cells showed the highest number of passages compared to amniotic stem cells. For tissue regeneration based on animal studies, amniotic stem cells showed the shortest time to regenerate in comparison with dental stem cells.
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INTRODUCTION

Stem cells (SCs) are one of the recent scientific findings of the 21st generation and have led to some parts of the fundamental knowledge of biological cells being rewritten. Embryonic SCs are derived from embryos, while adult, or somatic SCs, come from somatic cells. Both types are generally characterised by their plasticity. However, the pluripotentiality of embryonic SCs surpasses adult SCs. Although embryonic SCs seem to be the gold standard in terms of plasticity, ethical issues have capped it from being used widely, while adult SCs are multipotent SCs with less plasticity (Raff 2003) but generally raise no ethical issues. Adult SCs derived from bone marrow have been extensively studied (Woodbury et al. 2000; Terada et al. 2002). The cells are capable of differentiating into haematopoietic lineages (Huang & Terstappen 1992) and non-haematopoietic lineages (Le Blanc et al. 2003). Another type of multipotent SC is mesenchymal SCs (MSCs). However, the sources of these SCs pose some limitations because the procedure for obtaining adult SCs is usually invasive, painful and occasionally associated with morbidity (Baksh et al. 2007). In addition, sometimes only a handful of specialised SCs can be isolated (Pittenger et al. 1999; Sakaguchi et al. 2005). Taking all those factors into consideration, adult SCs remain the favourite SC because of ethics and the growing list of SC manipulation techniques, especially in the field of tissue engineering (Tuan et al. 2003; Caplan 2007). Thus, identifying alternative sources of adult SCs remains an important issue.

This review discusses two types of adult SCs: namely, dental and amniotic SCs. One of the best sources of SCs is dental SCs. Dental SCs are suggested to be remarkably resilient (Zhang et al. 2006) and have the capacity to differentiate into many specific cell types (Gronthos et al. 2000). In addition, dental SCs have a high number of passages before losing their stem cell markers (Kerkis et al. 2007), compared to SCs from the human amniotic membrane (HAM) (Miki et al. 2005). Thus, to understand these two types of SCs, the abilities of these two cell types must be understood, and these topics form the basis of the below sections. The induced pluripotent stem (iPS) cell, a synthetically derived SC that is recently becoming a popular source of SCs, is out of the scope of this review article.

CHARACTERISTICS OF MESENCHYMAL STEM CELLS

Several features of MSCs include phenotypic, morphological, cell lineage and stem cell marker characteristics. The plastic adherence nature of MSCs to tissue culture flasks constitutes its phenotypic characteristic (Horwitz et al. 2005). MSCs have a fibroblastic-like cell morphology (Väänänen 2005). SCs are considered mesenchymal if they can differentiate into osteogenic, chondrogenic and adipogenic lineages (Pittenger et al. 1999; Toda et al. 2007). However, recent studies showed that MSCs can also differentiate into myogenic and neurogenic lineages (Alviano et al. 2007; Portmann-Lanz et al. 2006). In 2006, the International Society for Cellular Therapy (ISCT) proposed a cell surface marker panel for the minimal identification of human MSCs (Takata et al. 2004). Under that recommendation, MSCs should be positive for CD73, CD90, and CD105 and lack typical hematopoietic antigens, which are CD45, CD34, CD14 (Pittenger et al. 1999), CD11b or CD19 or CD79α, and HLA-DR (Takata et al. 2004). Other expressed cell surface markers are CD44, CD166 (Sánchez et al. 2011), CD29 (Kern et al. 2006), and CD271 (Bühring et al. 2007).

Dental Stem Cells

Adult MSCs come from many sources, including the tooth (Fig. 1) and HAM (Fig. 2). Dental SCs can be isolated from a few locations of the tooth. The SCs isolated from the permanent third molars of adult human dental pulp are termed dental pulp SCs (DPSCs) (Shi & Gronthos 2003), while SCs isolated from the pulp of deciduous teeth are known as SCs from human exfoliated deciduous teeth (SHED) (Miura et al. 2003). The SCs from the apical papilla (SCAPs) are the SCs isolated from the tooth root apex (Sonoyama et al. 2008), while periodontal ligament (PDL) SCs (PDLSCs) are those SCs from the PDL (Demarco et al. 2011).
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Figure 1: Diagram showing sources of MSCs from the tooth.

Note: DPSCs: dental pulp SCs; SHED: SC from human exfoliated deciduous teeth; PDLSCs: periodontal ligament SCs; SCAP: SC from apical papilla
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Figure 2: Diagram showing sources of MSCs from the human amniotic membrane.

Note: HAECs: human amniotic epithelial SCs; HAMMSCs: human amniotic mesenchymal SCs



Amniotic Stem Cells

Two types of SCs can be isolated from HAM: human amniotic epithelial SCs (HAESCs) (Alonso & Fuchs 2003) and human amniotic membrane mesenchymal SCs (HAMMSCs) (Alviano et al. 2007). HAECs are cuboidal to columnar cells that form a monolayer lining on the membrane and are in direct contact with the amniotic fluid (Caruso et al. 2012). HAECs, which arise from the embryonic epiblast, are amongst the first cells to differentiate from the conceptus (Parolini et al. 2008). The conceptus includes all structures that develop from the zygote; it comprises the embryo as well as the embryonic part of the placenta and its associated membranes: the amnion and chorion (Gitlin et al. 1972; Jauniaux et al. 2005). In contrast, HAMMSCs are dispersed in an extracellular matrix largely composed of collagen and laminin and are derived from extraembryonic mesoderm (Boury-Jamot et al. 2006).

CULTURE CHARACTERISTIC COMPARISONS

Differentiation Lineages

Dental and amniotic SCs differ in terms of their differentiation lineages; Zhang et al. (2006) found that DPSCs can differentiate into 5 lineages: osteogenic, adipogenic, chondrogenic, myogenic and neurogenic. SHED can differentiate into 6 lineages: dentinogenic (Minguell & Erices 2006), chondrogenic, myogenic (Sakaguchi et al. 2005), adipogenic, neurogenic and osteogenic (Miura et al. 2003). Some studies found that SCAPs differentiate into 3 lineages, dentinogenic, adipogenic (Caplan 2007), and neurogenic (Sonoyama et al. 2008), while PDLSCs differentiate into 4 lineages, osteo/cementogenic, adipogenic (Le Blanc et al. 2003), chondrogenic (Seo et al. 2004), and neurogenic (Huang et al. 2009). Among all the dental SCs, SHED showed the highest differentiation capacity because they can differentiate into 6 lineages. As for amniotic SCs, HAECs can differentiate into 9 lineages: adipogenic, chondrogenic, lung (Díaz-Prado et al. 2011), myogenic, osteogenic, cardiomyogenic (Ilancheran et al. 2007), neural, hepatic, and pancreatic (Miki et al. 2005). On the other hand, HAMMSCs can differentiate into 8 lineages: adipogenic, chondrogenic, neurogenic, angiogenic (Alviano et al. 2007), osteogenic and myogenic (Portmann-Lanz et al. 2006), hepatic (Tamagawa et al. 2007), and cardiomyogenic (Zhao et al. 2005). Based on the above research, HAECs differentiate into more lineages than HAMMSCs, and amniotic SCs have the maximum number of differentiation lineages based on the differentiation potential of HAECs.

Number of Passages

In research, the number of passages is one of the important determinations for SC studies. Dental SCs showed a higher number of passages compared to amniotic SCs. DPSCs have been passaged for up to 25 passages (Zhang et al. 2006; Kerkis et al. 2007). Sakaguchi et al. (2005) stated that the maximum passage number for SHED was up to passage 5 based on their research. Minguell and Erices (2006) reported that the highest passage number for SCAPs was passage 10, and the highest passage number for PDLSCs was passage 4 (Le Blanc et al. 2003). Among the dental SCs, DPSCs showed the highest passage number compared to SHED, SCAPs and PDLSCs. HAECs and HAMMSCs can also be compared in terms of passage numbers. Miki et al. (2005) found that HAECs can be maintained up to passage 8. A study (Bilic et al. 2008) postulated that HAMMSC proliferation nearly stopped beyond passage 5, while another study (Parolini et al. 2008) reported that HAMMSCs proliferate for 2 to 6 passages before proliferation ceases. Thus, dental SCs showed the highest passage numbers.

Animal Model Studies

Dental SCs and amniotic SCs also can be compared based on studies conducted on animal models. Dental SCs, DPSCs, SHED, SCAPs and PDLSCs have been used for pulp dentin/tissue engineering and regeneration in animal studies. DPSCs and SCAPs have been used to regenerate dentin (Sonoyama et al. 2008; Alongi et al. 2010). Similar to DPSCs (Alongi et al. 2010), SCAPs also required 8 weeks to regenerate dentin in the presence of hydroxyapatite and tricalcium phosphate (HA/TCP) (Sonoyama et al. 2008). Another study employed SHED to observe the regeneration of pulp (Cordeiro et al. 2008). After only 2–4 weeks, SHED became pulp. Seo et al. (2004) used PDLSCs for periodontal repair. The PDL is similar to tendon in terms of its dense collagen fibre structure and its ability to absorb mechanical stress during normal physiological activity (Berkovitz 1990). Among dental SCs, SHED exhibited the shortest period for tissue regeneration compared to DPSCs, SCAPs and PDLSCs (Seo et al. 2004; Cordeiro et al. 2008; Sonoyama et al. 2008; Alongi et al. 2010). Some studies (Manuelpillai et al. 2010; Zhang et al. 2011) used amniotic SCs, HAMMSCs and HAECs to treat liver fibrosis using immunocompetent mice. HAECs only required 2 weeks to decrease fibrosis formation and the progression of toxic carbon tetrachloride-induced cirrhosis; the same processes required 4 weeks for HAMMSCs. When comparing HAECs and HAMMSCs, HAECs showed the shortest time to regenerate tissues in liver fibrosis (Manuelpillai et al. 2010; Zhang et al. 2011). Both types of SCs have been successfully used in animal models but for different purposes. However, amniotic SCs showed the shortest time for tissue regeneration compared to dental SCs (Table 1).


Table 1: Comparison of culture characteristics of dental SCs and amniotic SCs.



	
	Dental SCs

	Amniotic SCs




	
	6 lineages

	9 lineages




	Differentiation lineages
	dentinogenic, chondrogenic, myogenic, adipogenic, neurogenic and osteogenic

	adipogenic, chondrogenic, lung, myogenic, osteogenic, cardiomyogenic, neural, hepatic, and pancreatic




	Maximum number of passages
	25

	9




	Animal model studies
	Dentin and pulp regeneration, periodontal repair

	Liver fibrosis





CONCLUSION

Despite the lower passage number of amniotic SCs, they hold promise in tissue regeneration due to their greater number of differentiation lineages and shorter regeneration capacity compared with dental stem cells. The high number of differentiation lineages of amniotic SCs suggests their high multipotentiality.
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