Construction of Novel Yeast Strains from Candida tropicalis KBKTI 10.5.1 and Saccharomyces cerevisiae DBY1 to Improve the Performance of Ethanol Production Using Lignocellulosic Hydrolysate

Main Article Content

Jamaluddin
Eny Ida Riyanti
Nisa Rachmania Mubarik
Edy Listanto

Abstract

Increased consumption of xylose-glucose and yeast tolerance to lignocellulosic hydrolysate are the keys to the success of second-generation bioethanol production. Candida tropicalis KBKTI 10.5.1 is a new isolated strain that has the ability to ferment xylose. In contrast to Saccharomyces cerevisiae DBY1 which only can produce ethanol from glucose fermentation. The research objective is the application of the genome shuffling method to increase the performance of ethanol production using lignocellulosic hydrolysate. Mutants were selected on xylose and glucose substrates separately and using random amplified polymorphic DNA (RAPD) analysis. The ethanol production using lignocellulosic hydrolysate by parents and mutants was evaluated using a batch fermentation system. Concentrations of ethanol, residual sugars, and by-products such as glycerol, lactate and acetate were measured using HPLC machine equipped with Hi-plex H for carbohydrate column and a refraction index detector (RID). Ethanol produced by Fcs1 and Fcs4 mutants on acid hydrolysate increased by 26.58% and 24.17% from parent DBY1, by 14.94% and 21.84% from parent KBKTI 10.5.1. In contrast to the increase in ethanol production on alkaline hydrolysate, Fcs1 and Fcs4 mutants only experienced an increase in ethanol production by 1.35% from the parent KBKTI 10.5.1. Ethanol productivity by Fcs1 and Fcs4 mutants on acid hydrolysate reached 0.042 g/L/h and 0.044 g/L/h. The recombination of the genomes of different yeast species resulted in novel yeast strains that improved resistance performance and ethanol production on lignocellulosic hydrolysates.

Article Details

How to Cite
Construction of Novel Yeast Strains from Candida tropicalis KBKTI 10.5.1 and Saccharomyces cerevisiae DBY1 to Improve the Performance of Ethanol Production Using Lignocellulosic Hydrolysate. (2023). Tropical Life Sciences Research, 34(2), 81–107. https://doi.org/10.21315/tlsr2023.34.2.5
Section
Original Article

References

Ariyan M, and Uthandi S. (2019). Xylitol production by xylose reductase over producing recombinant Escherichia coli M15. Madras Agricultural Journal 106: 205–209. https://doi.org/10.29321/MAJ.2019.000247

Biot-Pelletier D and Martin V J J. (2014). Evolutionary engineering by genome shuffling. Applied Microbiology and Biotechnology 98(9): 3877–3887. https://doi.org/10.1007/ s00253-014-5616-8

Burphan T, Tatip S, Limcharoensuk T, Kangboonruang K, Boonchird C and Auesukaree C. (2018). Enhancement of ethanol production in very high gravity fermentation by reducing fermentation-induced oxidative stress in Saccharomyces cerevisiae. Scientific Reports 8(13609): 1–11. https://doi.org/10.1038/s41598-018-31558-4

Buši? A, Mar?etko N, Kundas S, Morzak G, Belskaya H, Šantek M I, Komes D, Novak S and Šantek B. (2018). Bioethanol production from renewable raw materials and its separation and purification: A review. Food Technology and Biotechnology 56(3): 289–311. https://doi.org/10.17113/ftb.56.03.18.5546

Cardona C A and Sánchez O J. (2007). Fuel ethanol production: Process design trends and integration opportunities. Bioresource Technology 98(12): 2415–2457. https://doi. org/10.1016/j.biortech.2007.01.002

Chaudhary A, Hussain Z, Aihetasham A, El-Sharnouby M, Rehman R A, Khan M A U, Zahra S, Saleem A, Azhar S, Alhazmi A, et al. (2021). Pomegranate peels waste hydrolyzate optimization by response surface methodology for bioethanol production. Saudi Journal of Biological Sciences 28(9): 4867–4875. https://doi. org/10.1016/j.sjbs.2021.06.081

Faizal A, Sembada A A and Priharto N. (2020). Production of bioethanol from four species of duckweeds (Landoltia punctata, Lemna aequinoctialis, Spirodela polyrrhiza, and Wolffia arrhiza) through optimization of saccharification process and fermentation with Saccharomyces cerevisiae. Saudi Journal of Biological Sciences 28(1): 294– 301. https://doi.org/10.1016/j.sjbs.2020.10.002

Galhardo R S, Hastings P J and Rosenberg S M. (2007). Mutation as a stress response and the regulation of evolvability. Critical Reviews in Biochemistry and Molecular Biology 42(5): 399–435. https://doi.org/10.1080/10409230701648502

González B, Vázquez J, Cullen P J, Mas A, Beltran G and Torija M. (2018). Aromatic amino acid-derived compounds induce morphological changes and modulate the cell growth of wine yeast species. Frontiers in Microbiology 9(670): 1–16. https://doi. org/10.3389/fmicb.2018.00670

Jamaluddin, Mubarik N R, Listanto E, and Riyanti E I. (2021). Isolasi dan identifikasi molekuler khamir yang berkemampuan memfermentasi xilosa untuk produksi bioetanol generasi kedua. Paper presented at the Seminar Nasional Komisi Nasional Sumber Daya Genetik: Peran Bioteknologi dan Sumber Daya Genetik dalam Mendukung Pertanian Maju, Mandiri, dan Modern, Bogor, Indonesia, 15 September, 723–737. http://repository.pertanian.go.id/handle/123456789/14483

Jetti K D, GNS R R, Garlapati D and Nammi S K. (2018). Improved ethanol productivity and ethanol tolerance through genome shuffling of Saccharomyces cerevisiae and Pichia stipites. International Microbiology 22(2): 247–254. https://doi.org/10.1007/ s10123-018-00044-2

Jin E and Sutherland J W. (2016). A proposed integrated sustainability model for a bioenergy system. Procedia CIRP 48: 358–363. https://doi.org/10.1016/j.procir.2016.03.159

Kahar P, Riyanti E I, Otsuka H, Matsumoto H, Kihira C, Ogino C and Kondo A. (2017). Challenges of non-flocculating Saccharomyces cerevisiae haploid strain against inhibitory chemical complex for ethanol production. Bioresource Technology 245: 1436–1446. https://doi.org/10.1016/j.biortech.2017.06.009

Kim S, Lee J and Sung B H. (2019). Isolation and characterization of the stress-tolerant Candida tropicalis YHJ1 and evaluation of its xylose reductase for xylitol production from acid pre-treatment wastewater. Frontiers in Bioengineering and Biotechnology 7(138): 1–12. https://doi.org/10.3389/fbioe.2019.00138

Lackey E, Vipulanandan G, Childers D S and Kadosh D. (2013). Comparative evolution of morphological regulatory functions in Candida species. Eukaryotic Cell 12(10): 1356–1368. https://doi.org/10.1128/EC.00164-13

Loewe L and Hill W G. (2010). The population genetics of mutations: good, bad and indifferent. Philosophical Transactions of the Royal Society B: Biological Sciences 365(1544): 1153–1167. https://doi.org/10.1098/rstb.2009.0317

Meneses L R, Raud M, Orupold K and Kikas T. (2017). Second-generation bioethanol production: A review of strategies for waste valorization. Agronomy Research 15(3): 830–847.

Minmunin J, Limpitipanich P and Promwungkwa A. (2015). Delignification of elephant grass for production of cellulosic intermediate. Energy Procedia 79: 220–225. https://doi. org/10.1016/j.egypro.2015.11.468

Morais R F, Morais C S B, de Morais L F and Almeida J C C. (2018). Energy balance of elephant grass biomass for power generation by direct biomass combustion. African Journal of Biotechnology 17(13): 405–410. https://doi.org/10.5897/ AJB2018.16385

Moremi M E, Rensburg E L J V and Grange D C L. (2020). The improvement of bioethanol production by pentose-fermenting yeasts isolated from herbal preparations, the gut of dung beetles, and marula wine. International Journal of Microbiology 2020: 1–13. https://doi.org/10.1155/2020/5670936

Mouro A, Santos A A D, Agnolo D D, Gubert G F, Bon E P S, Rosa C A, Fonseca C and Stambuk B U. (2020). Combining xylose reductase from Spathaspora arborariae with xylitol dehydrogenase from Spathaspora passalidarum to promote xylose consumption and fermentation into xylitol by Saccharomyces cerevisiae. Fermentation 6(3): 72. https://doi.org/10.3390/fermentation6030072

Mukherjee V, Steensels J, Lievens B, de Voorde I V, Verplaetse A, Aerts G, Willems K A, Thevelein J M, Verstrepen K J and Ruyters S. (2014). Phenotypic evaluation of natural and industrial Saccharomyces yeasts for different traits desirable in industrial bioethanol production. Applied Microbiology and Biotechnology 98(22): 9483–9498. https://doi.org/10.1007/s00253-014-6090-z

Myers J A, Curtis B S and Curtis W R. (2013). Improving accuracy of cell and chromophore concentration measurements using optical density. BMC Biophysics 6(4): 1–15. https://doi.org/10.1186/2046-1682-6-4

Nadeem S G, Shafiq A, Hakim A T, Anjum Y and Kazm S U. (2013). Effect of growth media, pH and temperature on yeast to hyphal transition in Candida albicans. Open Journal of Medical Microbiology 3(3): 185–192. https://doi.org/10.4236/ ojmm.2013.33028

Nesin O M, Pakhomova O N, Xiao S and Pakhomov A G. (2011). Manipulation of cell volume and membrane pore comparison following single cell permeabilization with 60- and 600-ns electric pulses. Biochimica et Biophysica Acta Biomembranes 1808(3): 792–801. https://doi.org/10.1016/j.bbamem.2010.12.012

Nweze J E, Ndubuisi I, Murata Y, Omae H and Ogbonna J C. (2019). Isolation and evaluation of xylose-fermenting thermotolerant yeasts for bioethanol production. Biofuels 12(8): 961–970. https://doi.org/10.1080/17597269.2018.1564480

Olofsson K, Runquist D, Hahn-Hägerdal B and Lidén G. (2011). A mutated xylose reductase increases bioethanol production more than a glucose/xylose facilitator in simultaneous fermentation and co-fermentation of wheat straw. AMB Express 1(4): 1–8. https://doi.org/10.1186/2191-0855-1-4

Orosco F L, Estrada S M, Simbahan J F, Alcantara V A and Pajares I G. (2017). Genome shuffling for improved thermotolerance, ethanol tolerance and ethanol production of Saccharomyces cerevisiae 2013. Philippine Science Letters 10(1): 22–28.

Palmqvist E and Hahn-Hagerdal B. (2000). Fermentation of lignocellulosic hydrolysates. II: Inhibitors and mechanisms of inhibition. Bioresource Technology 74(1): 25–33. https://doi.org/10.1016/S0960-8524(99)00161-3

Richard P, Toivari M H and Penttila M. (2000). The role of xylulokinase in Saccharomyces cerevisiae xylulose catabolism. FEMS Microbiology Letters 190(1): 39–43. https://doi.org/10.1111/j.1574-6968.2000.tb09259.x

Riyanti E I and Listanto E. (2017). Inhibiton of the growth of tolerant yeast Saccharomyces cerevisiae strain I136 by a mixture of synthetic inhibitors. Indonesian Journal of Agricultural Science 18(1): 17–24. https://doi.org/10.21082/ijas.v18n1.2017.p17- 24

_______. (2021). Understanding yeast tolerance as cell factory for bioethanol production from lignocellulosic biomass. Paper presented at the Second International Conference on Genetic Resources and Biotechnology. Bogor, Indonesia, 24–25 May, 060006-1–060006-7.

Riyanti E I, Yuniawati R, Sanjaya R A, Samudra I M, Listanto E, Lestari E G and Mastur. (2019). Potential use of Saccharomyces cerevisiae TKPK 10.5.1 isolated from several sources for ethanol using various sugar sources. Paper presented at the 6th International Conference on Biological Science ICBS 2019, Yogyakarta, Indonesia, 10–11 October, 060004-1–060004-9. https://doi.org/10.1063/5.0015968

Robak K and Balcerek M. (2018). Review of second generation bioethanol production from residual biomass. Food Technology and Biotechnology 56(2): 174–187. https:// doi.org/10.17113/ftb.56.02.18.5428

Rolland F, Winderickx J and Thevelein J M. (2002). Glucose-sensing and -signaling mechanisms in khamir. FEMS Yeast Research 2(2): 183–201. https://doi. org/10.1016/S1567-1356(02)00046-6

Saini P, Beniwal A and Vij S. (2017). Comparative analysis of oxidative stress during aging of Kluyveromyces marxianus in synthetic and whey media. Applied Biochemistry and Biotechnology 183(1): 348–361. https://doi.org/10.1007/s12010-017-2449-9

Sasani E, Khodavaisy S, Agha K A S, Darabian S and Rezaie S. (2016). Pseudohyphae formation in Candida glabrata due to CO2 exposure. Current Medical Mycology 2(4): 49–52. https://doi.org/10.18869/acadpub.cmm.2.4.49

Sjulander N and Kikas T. (2020). Origin, impact and control of lignocellulosic inhibitors in bioethanol production: A review. Energies 13(4751): 1–20. https://doi.org/10.3390/ en13184751

Smidt O, Preez J C and Albertyn J. (2012). Molecular and physiological aspects of alcohol dehydrogenases in the ethanol metabolism of Saccharomyces cerevisiae. FEMS Yeast Research 12(1): 33–47. https://doi.org/10.1111/j.1567-1364.2011.00760.x

Suharsono, Nurandinie D R, Tjahjoleksono A. (2020) Analysis of mutant of potato (Solanum tuberosum L.) cultivar Kennebec. IOP Conference Series: Earth and Environmental Science 457: 012074. https://doi.org/10.1088/1755-1315/457/1/012074

Veses V and Gow N A R. (2009). Pseudohypha budding patterns of Candida albicans. Medical Mycology 47(3): 268–275. https://doi.org/10.1080/13693780802245474

Vidal A K F, Barbé T D, Daher R F, Filho J E A, Lima R S N, Freitas R S, Rossi D A et al. (2017). Production potential and chemical composition of elephant grass (Pennisetum purpureum Schum.) at different ages for energy purposes. African Journal of Biotechnology 16(25): 1428–1433. https://doi.org/10.5897/ AJB2017.16014

Vilela L D F, Araujo V P G D, Paredes R D S, Bon E P D S, Torres F A G, Neves B C and Eleutherio E C A. (2015). Enhanced xylose fermentation and ethanol production by engineered Saccharomyces cerevisiae strain. AMB Express 5(16): 1–7. https:// doi.org/10.1186/s13568-015-0102-y

Vilela L D F, Mello V M D, Reis V C B, Bon E P D S, Torres F A G, Neves B C and Eleutherio E C A. (2013). Functional expression of Burkholderia cenoceparia xylose isomerase in yeast increase ethanol production from a glucose-xylose blend. Bioresource Technology 128(2013): 792–796. https://doi.org/10.1016/j.biortech.2012.10.014

Walker G M and Stewart G G. (2016). Saccharomyces cerevisiae in the production of fermented beverages. Beverages 2(30): 1–12. https://doi.org/10.3390/ beverages2040030

Wallace-Salinas V and Gorwa-Grauslund M F. (2013). Adaptive evolution of an industrial strain of Saccharomyces cerevisiae for combined tolerance to inhibitors and temperature. Biotechnology for Biofuels 6(151): 1–9. https://doi.org/10.1186/1754- 6834-6-151

Young A I, Benonisdottir S, Przeworski M and Kong A. (2019). Deconstructing the sources of genotype-phenotype associations in humans. Science 365(6460): 1396–1400. https://doi.org/10.1126/science.aax3710

Zabed H, Sahu J N, Boyce A N and Faruq G. (2016). Fuel ethanol production from lignocellulosic biomass: An overview on feedstocks and technological approaches. Renewable and Sustainable Energy Reviews 66: 751–774. https:// doi.org/10.1016/j.rser.2016.08.038

Zhang W and Geng A. (2012). Improved ethanol production by a xylose-fermenting recombinant yeast strain contructed through a modified genome shuffling method. Biotechnology for Biofuels 5(46): 1–11. https://doi.org/10.1186/1754-6834-5-46