In Vitro Antimalarial Susceptibility of Plasmodium falciparum and Plasmodium berghei Isolates to Selected Antimalarial Agents, Column Chromatographic Subfractions of Glyphaea brevis Leaves Extract and FTIR and GCNS of SF8

Main Article Content

Tayo Micheal Anjuwon
Joseph Olorunmola Ehinmidu
Kola Matthew Anigo
Dorcas Bolanle James

Abstract

Malaria still remains a life-threatening parasitic disease with universal targets set for control and elimination. This study aimed to evaluate the in vitro antimalarial susceptibility of Plasmodium falciparum isolates and Plasmodium berghei to selected antimalarial agents and column chromatographic subfractions of Glyphaea brevis leaves extract and FTIR and GCMS of SF8. Trager and Jensen as well as World Health Organisation (WHO) standardised in vitro micro-test system methods were used to determine susceptibility on the patients’ blood samples; Column chromatographic procedure was carried out to obtain 11 pooled fractions; FTIR and GCMS were used to determine functional groups and phytochemicals respectively. In vitro anti-plasmodial activity against P. falciparum clinical isolates had IC50 range of 1.03 ?g/mL–7.63 ?g/mL while their IC50 against P. berghei ranges from 4.32 ?g/mL–7.89 ?g/mL. Subfraction 8 (SF8) had the least IC50 of 4.32 ?g/mL. The FTIR spectrum showed the presence of isoprenoid, alcohol, phenol, alkane, alkenes, ester, carboxylic acids, aromatics and nitro compounds while GCMS identified dodecanoic acid, methyl ester; carotol; hexadecanoic acid, methyl ester; 9-octadecenoic acid (Z)-, methyl ester (oleic acid); methyl stearate; heptadecanoic acid, 16-methyl-, methyl ester; all with their antimalarial reported activities. In conclusion, G. brevis has a great potential for drug development against malaria parasite since it inhibited schizont growth and possesses phytocompounds with antimalarial report.

Article Details

How to Cite
In Vitro Antimalarial Susceptibility of Plasmodium falciparum and Plasmodium berghei Isolates to Selected Antimalarial Agents, Column Chromatographic Subfractions of Glyphaea brevis Leaves Extract and FTIR and GCNS of SF8. (2023). Tropical Life Sciences Research, 34(2), 279–297. https://doi.org/10.21315/tlsr2023.34.2.14
Section
Original Article

References

Adnan M, Chy M N U, Kamal A T M M, Azad M O K, A, P, Uddin S B, Barlow J W, Mohammad M O, Park C H and Cho D H. (2019). Investigation of the biological activities and characterization of bioactive constituents of Ophiorrhiza rugosa var. prostrata (D.Don) & mondal leaves through in vivo, in vitro, and in silico approaches. Molecules 24(7): 1367. https://doi.org/10.3390/molecules24071367

Akuodor G C, Ezeonu C T, Essien A D, Asika E C, Chilaka K C, Nwachukwu D C and Nwobodo N N. (2017). In vivo antiplasmodial activity of Bombax buonopozense root bark aqueous extract in mice infected by Plasmodium berghei. Traditional Chinese Medicine 15: 431–435. https://doi.org/10.1016/S0254-6272(17)30148-6

Anjuwon T M, Adepoju O A and Adeniran S M. (2019). Comparative antimalarial and toxicological studies of aqueous and methanol extracts of Giphaea brevis leaves in experimental malaria models in mice. African Journal of Biomedical Research 22(3): 309–314.

Anjuwon T M, Ibrahim S and Nok A J. (2015). Evaluation of in-vivo antimalarial activity of methanol leaf extract of Glyphaea brevis in Plasmodium berghei-infected mice. Tropical Journal of Pharmaceutical Research 14(10): 1837–1842. https://doi. org/10.4314/tjpr.v14i10.14

Araujo M T d, Silveira C L and Mcchesney J D. (1991). Monoterpenes characterization by {sup 1} H and {sup 13} C-1 NMR (Caracterizacao de monoterpenos por RMN-{sup 1} H e de {sup 13} C-1).

Baltac?o?lu H, Baltac?o?lu C, Okur I, Tanr?vermi? A and Yal?ç M. (2021). Optimization of microwave-assisted extraction of phenolic compounds from tomato: Characterization by FTIR and HPLC and comparison with conventional solvent extraction. Vibrational Spectroscopy 113: 103204. https://doi.org/10.1016/j. vibspec.2020.103204

Banzragchgarav O, Batkhuu J, Myagmarsuren P, Battsetseg B, Battur B and Nishikawa Y. (2021). In vitro potently active anti-plasmodium and anti-toxoplasma Mongolian plant extracts. Acta Parasitologica 66(4): 1442–1447. https://doi.org/10.1007/ s11686-021-00401-8

Bouyahya A, Mechchate H, Benali T, Ghchime R, Charfi S, Balahbib A, Burkov P, Shariati M A, Lorenzo J M and Omari N E. (2021). Health benefits and pharmacological properties of carvone. Biomolecules 11(12): 1803. https://doi.org/10.3390/ biom11121803

Cheesbrough M. (2000). District laboratory practice in tropical countries. Cambridge: Cambridge University Press, 250–253.

Cui L, Wang Z, Miao J, Miao M, Chandra R and Jiang H. (2012). Mechanism of in vitro resistance to dihydroartemisinin in Plasmoduim falciparum. Molecular Microbiology 86(1): 111–128. https://doi.org/10.1111/j.1365-2958.2012.08180.x

Duraisamy M and Selvaraju R. (2020). Analysis of bioactive compounds by gas chromatography – mass spectrum and anti-bacterial activity of Zonaria crenata. Aegaeum Journal 8: 829–844. https://doi.org/10.22214/ijraset.2020.31296

Dwivedi M K, Shukla R, Sharma N K, Manhas A, Srivastava K, Kumar N and Singh P K. (2021). Evaluation of ethnopharmacologically selected Vitex negundo L. for In vitro antimalarial activity and secondary metabolite profiling. Journal of Ethnopharmacology 275: 114076. https://doi.org/10.1016/j.jep.2021.114076

Easmin S, Sarker M Z I, Ghafoor K, Ferdosh S, Jaffri J, Ali M E, Mirhosseini H, Al-Juhaimi F Y, Perumal V and Khatib A. (2017). Rapid investigation of ?-glucosidase inhibitory activity of Phaleria macrocarpa extracts using FTIR-ATR based fingerprinting. Journal of Food Drug Analysis 25(2): 306–315. https://doi.org/10.1016/j. jfda.2016.09.007

Ejele A E, Iwu I C, Enenebeaku C K, Ukiwe L N and Okolue B N. (2012). Bioassay-guided isolation, purification and partial characterization of antimicrobial compound from basic metabolite of Garcinia Kola. Journal of Emerging Trends in Engineering and Applied Sciences 3(4): 668–672.

Enenebeaku U, Duru C, Mgbemena I, Ukwandu N, Nwigwe H, Enenebeaku C and Okotcha E. (2021). Phytochemical evaluation and molecular docking of bioactive compounds from the roots of Dictyandraarborescens (Welw.) against Plasmodium bergheiprotein targets. Tropical Journal of Natural Product Research 5(2): 370– 381.

Eseyin O A, Etim I E, Attih E E, Johnson E, Udobre A S, Ebong A S and Zofou D. (2021). In vitro antiplasmodial, cytotoxic and antioxidant effects, and phytochemical constituents of eleven plants used in the traditional treatment of malaria in Akwa Ibom State, Nigeria. Tropical Journal of Pharmaceutical Research 20(1): 105–111. https://doi.org/10.4314/tjpr.v20i1.16

Fard M P M, Ketabchi S and Farjam M H. (2020). Chemical composition, antimicrobial and antioxidant potential of essential oil of Ziziphus spina-christi var. aucheri grown wild in Iran. Journal of Medicinal Plants and By-products 1: 69–73.

Federal Ministry of Health Nigeria. (2017). National malaria control programme. Nigeria: Federal Ministry of Health. https://www.health.gov.ng/index.php?option=com_ content&view=article&id=328&Itemid=550

Gaddam S A, Kotakadi V S, Sai-Gopal D V R, Subba-Rao Y and Reddy A V. (2014). Efficient and robust biofabrication of silver nanoparticles by cassia alata leaf extract and their antimicrobial activity. Journal of Nanostructure in Chemistry 4: 9. https://doi. org/10.1007/s40097-014-0082-5

Greenwood B M and Armstrong J R. (1991). Comparison of two simple methods for determining malaria parasite density. Transactions of the Royal Society of Tropical Medicine and Hygiene 85(2): 186–188. https://doi.org/10.1016/0035- 9203(91)90015-Q

Ibrahim K M, Mantawy E M, Elanany M M, Abdelgawad H S, Khalifa N M, Hussien R H, El-Agroudy N N and El-Demerdash E. (2020). Protection from doxorubicin-induced nephrotoxicity by clindamycin: Novel antioxidant, anti-inflammatory and anti-apoptotic roles. Naunyn-Schmiedeberg’s Archives of Pharmacology 393(4): 739–748. https://doi.org/10.1007/s00210-019-01782-4

Janakiraman M and Jeyaprakash K. (2015). Evaluation of phytochemical compounds in leaf extract of Vitex negundo L. using TLC, UV-VIS and FTIR analysis. International Journal of Health Sciences & Research 5(8): 289–295.

Kalaichelvi K and Dhivya S M. (2017). Screening of phytoconstituents, UV-VIS spectrum and FTIR analysis of Micrococca mercurialis (L.) Benth. International Journal of Herbal Medicine 5(6): 40–44.

Lalitha R and Palani S. (2017). Phytochemical analysis of Scinaia bengalica by GC-MS. International Journal of Chem Tech Research 10(1): 134–138.

Laryea M K, Sheringham B and Lawrence J. (2021). Antimalarial, antioxidant, and toxicological evaluation of extracts of Celtis africana, Grosseria vignei, Physalis micrantha, and Stachytarpheta angustifolia. Biochemistry Research International 2021: 9971857. https://doi.org/10.1155/2021/9971857

Lawal B, Shittu O K, Kabiru A Y, Jigam A A, Umar M B, Berinyuy E B and Alozieuwa B U. (2015). Potential antimalarials from African natural products: A review. Journal of Intercultural Ethnopharmacology 4(4): 318–343. https://doi.org/10.5455/ jice.20150928102856

Longley R J, Bauza,K, Ewer K J, Hill A V and Spencer A. (2015). Development of an in vitro assay and demonstration of Plasmodium berghei liver-stage inhibition by TRAP-specific CD8+ T cells. PLoS ONE 10(3), e0119880. https://doi.org/10.1371/ journal.pone.0119880

Mamede L, Ledoux A, Jansen O and Frédérich M. (2020). Natural phenolic compounds and derivatives as potential antimalarial agents. Planta Medica 86(09): 585–618. https://doi.org/10.1055/a-1148-9000

Maobe M, Nyarango R M and Box P. (2013). Fourier transformer infra-red spectrophotometer analysis of Urtica dioica medicinal herb used for the treatment of diabetes, malaria and pneumonia in Kisii region, Southwest Kenya. World Applied Sciences Journal 21(8): 1128–1135.

Marahatta A B, Poudel B and Basnyat R C. (2019). The phytochemical and nutritional analysis and biological activity of Tectaria coadunate Linn. International Journal of Herbal Medicine 7: 42–50.

Marie R, Toghueo K, Mbetyoumoun Mfouapon H, Madiesse Kemgne E A, Jiatsa Mbouna C D, Tsouh Fokou P V, Sahal D and Fekam Boyom F. (2018). Anti-plasmodium falciparum activity of extracts from 10 Cameroonian medicinal plants. Medicines 5(4): 115. https://doi.org/10.3390/medicines5040115

Mustofa J, Sholikhah E N and Wahyuono S. (2007). In vitro and in vivo antiplasmodial activity and cytotoxicity of extracts of Phyllanthus niruri L. herbs traditionally used to treat malaria in Indonesia. The Southeast Asian Journal of Tropical Medicine and Public Health 38(4): 609–615.

Nardos A and Makonnen E. (2017). In vivo antiplasmodial activity and toxicological assessment of hydroethanolic crude extract of Ajuga remota. Malaria Journal 16: 25. https://doi.org/10.1186/s12936-017-1677-3

Nassirou R S, Ibrahim M L, Ilagouma A T, Mahamadou A, Mamoudou M and Abdoulaye A. (2015). Évaluation in vitro de l’activité antiplasmodiale d’extraits de plantes issues de la pharmacopée traditionnelle du Niger. Journal of Applied Biosciences 89: 8291–8300. https://doi.org/10.4314/jab.v89i1.8

Ngemenya M N, Akam T M, Yong J N, Tane P, Fanso-Free S N, Berzins K and Titanji V P. (2006). Antiplasmodial activities of some products from Turreanthus africanus (Meliaceae). African Journal of Health Sciences 13(1): 33–39. https://doi. org/10.4314/ajhs.v13i1.30815

Nock I and Amlabu W. (2020). Antimalarial potency and phytochemical profile of Khaya senegalensis Juss. (1830)(Maliaceae). Nigerian Journal of Scientific Research 19(2): 80–95.

Oche O, John O, Chidi E, Rebecca S and Vincent U. (2017). Chemical constituents and nutrient composition of Carica papaya and vernonia amygdalina leaf extracts. Journal of Complementary Alternative Medical Research 2(1): 1–8. https://doi. org/10.9734/JOCAMR/2017/29402

Okafor I, Okpokam D, Antai A and Usanga E. (2016). Iron status of pregnant women in rural and urban communities of Cross River State, South-South Nigeria. Nigerian Journal of Physiological Sciences 31(2): 121–125.

Oladipo H J, Tajudeen Y A, Oladunjoye I O, Yusuff S I, Yusuf R O, Oluwaseyi E M, AbdulBasit M O, Adebisi Y A and El-Sherbini M S. (2022). Increasing challenges of malaria control in sub-Saharan Africa: Priorities for public health research and policymakers. Annals of Medicine & Surgery 81: 104366. https://doi.org/10.1016/j. amsu.2022.104366

Olasehinde G I, Ojurongbe O, Adeyeba A O, Fagade O E, Valecha N and Ayanda I O. (2014). In vitro studies on the sensitivity pattern on Plasmodium falciparum to anti-malaria drugs and local herbal extracts. Malaria Journal 13(1): 63–69. https://doi. org/10.1186/1475-2875-13-63

Önder A, Cinar A, Bakarates F, Noguera-Artiaga L and Antonio Carbonell-Barrachina A. (2021). Chemical composition and cytotoxic potency of essential oil from Seseli petraeum M. Bieb. (Apiaceae). Journal of Research in Pharmacy 25(3): 249–257. https://doi.org/10.29228/jrp.15

Orabueze C I, Ota D A and Coker H A. (2020). Antimalarial potentials of Stemonocoleus micranthus Harms (leguminoseae) stem bark in Plasmodium berghei infected mice. Journal of Traditional Complementary Medicine 10(1): 70–78. https://doi. org/10.1016/j.jtcme.2019.03.001

Osafo N and Boakye Y D. (2016). Glyphaea brevis (Spreng.) Monach.: A review of the ethno-medical, phytochemical and pharmacological investigations. British Journal of Pharmaceutical Research 12(2): 1–18. https://doi.org/10.9734/BJPR/2016/26689

Pawar S and Kamble V. (2017). Phytochemical screening, elemental and functional groups analysis of Vitex negundo L. leaves. International Journal of Pharmacy and Pharmaceutical Sciences 9(6): 226–230. https://doi.org/10.22159/ ijpps.2017v9i6.18093

Shaaban M T, Ghaly M F and Fahmi S M. (2021). Antibacterial activities of hexadecanoic acid methyl ester and green?synthesized silver nanoparticles against multidrug?resistant bacteria. Journal of Basic Microbiology 61(6): 557–568. https://doi. org/10.1002/jobm.202100061

Shen T, Qian H, Wang Y-D, Li H-B and Xie W-D. (2020). Terpenoids from the roots of Leontopodium longifolium and their inhibitory activity on NO production in RAW264. 7 cells. Journal of Natural Product Research 34(16): 2323–2327. https://doi.org/1 0.1080/14786419.2018.1531407

Singh G, Urhekar D A and Raksha. (2015). In vitro antimalarial sensitivity testing for plasmodial falciparum and Plasmodium vivax. Journal of Dental and Medical Sciences 14(4): 49–55.

Taha B N M and Mudawi B M. (2018). Fatty acids analysis of petroleum ether crude extracts from three parts of sterculia setigera del. American Journal of Research Communication 6(5): 24–33.

Teng W -C, Chan W, Suwanarusk R, Ong A, Ho H -K, Russell B, Rénia L and Koh H -L. (2019). In vitro antimalarial evaluations and cytotoxicity investigations of Carica papaya leaves and carpaine. Natural Product Communications 14(1): 33–36. https://doi.org/10.1177/1934578X1901400110

Thummajitsakul S, Samaikam S, Tacha S and Silprasit K. (2020). Study on FTIR spectroscopy, total phenolic content, antioxidant activity and anti-amylase activity of extracts and different tea forms of Garcinia schomburgkiana leaves. LWT-Food Science and Technology 134: 110005. https://doi.org/10.1016/j.lwt.2020.110005

Tindana P, de Haan F, Amaratunga C, Dhorda M, van der Pluijm R W, Dondorp A M and Cheah P Y. (2021). Deploying triple artemisinin-based combination therapy (TACT) for malaria treatment in Africa: Ethical and practical considerations. Malaria Journal 20(1): 1–7. https://doi.org/10.1186/s12936-021-03649-7

Topal?a C M, T?tarua L D and Ducu C. (2017). ATR-FTIR spectra fingerprinting of medicinal herbs extracts prepared using microwave extraction. Arabian Journal of Medicinal and Aromatic Plants 3(1): 1–9.

Trager W and Jensen J B. (1976). Human malaria parasites in continuous culture. Science 193(4254): 673–675. https://doi.org/10.1126/science.781840

Ukwubile C, Ahmed A, Katsayal U, Ya’u J and Mejida S. (2019). GC-MS analysis of bioactive compounds from Melastomastrum capitatum (Vahl) Fern. leaf methanol extract: An anticancer plant. Scientific African 3: e00059. https://doi.org/10.1016/j. sciaf.2019.e00059

Verstegen-Haaksma A A, Swarts H J, Jansen B J, de Groot A, Bottema-MacGillavry N and Witholt B. (1995). Application of S-(+)-carvone in the synthesis of biologically active natural products using chemical transformations and bioconversions. Industrial Crops Products 4(1): 15–21. https://doi.org/10.1016/0926-6690(95)00006-X

Waheed G A. (2012). A review of experimental procedures of Gas Chromatography-Mass Spectrometry (GC-MS) and possible sources of analytical errors. Earth Sciences 1(1): 1–9. https://doi.org/10.11648/j.earth.20120101.11

Wang S -N, Zhang F -D, Huang A -M and Zhou Q. (2016). Distinction of four Dalbergia species by FTIR, 2nd derivative IR, and 2D-IR spectroscopy of their ethanol-benzene extractives. Holzforschung 70(6): 503–510. https://doi.org/10.1515/hf- 2015-0125

Wang X and Li T. (2021). Ropivacaine inhibits the proliferation and migration of colorectal cancer cells through ITGBI. Bioengineered 12(1): 44–53. https://doi.org/10.1080/ 21655979.2020.1857120

World Health Organization (WHO) Malaria Unit. (2001). In vitro micro-test (Mark III) for the assessment of the response of Plasmodium falciparum to chloroquine, mefloquine, quinine, amodiaquine, sulfadoxine/pyrimethamine and artemisinin instructions for use of the in vitro micro-test kit (Mark III), 2nd revision. World Health Organization. https://apps.who.int/iris/handle/10665/67373

_______. (2008). World Health Organization. Guinea-Bissau. https://www.who.int/malaria/ publications/country-profiles/profile_gnb_en.pdf

_______. (2022). World malaria report 2021. Geneva: WHO.

Zahara K, Bibi Y, Arshad M, Kaukab G, Al Ayoubi S and Qayyum A. (2022). In-vitro examination and isolation of antidiarrheal compounds using five bacterial strains from invasive species Bidens bipinnata L. Saudi Journal of Biological Sciences 29(1): 472–479.https://doi.org/10.1016/j.sjbs.2021.09.006