Preliminarily Study on Hydroxyproline Content of Purple-spotted Bigeye (Priacanthus tayenus) Scaly Skin and Its Gelatine Quality

Main Article Content

Widiyanto
Uju
Sitti Hardiyanti Rachman
Mala Nurilmala

Abstract

The investigation of alternative raw materials for gelatine production from fishery industry by-products has gained attention due to the increasing demand for gelatine and the importance for sustainable practices. This study aims to determine the optimal hydrochloric acid (HCl) concentration for mineral removal during pre-treatment, assess hydroxyproline content at various processing stages and characterise the resultant gelatine. The methodology involved pre-treatment of the materials with 0.1 M sodium hydroxide (NaOH) to remove non-collagen proteins, followed by mineral extraction using varying HCl concentrations (0.25, 0.5, 0.75 and 1 M). The process included swelling in 0.2% citric acid for 12 h and gelatine extraction at 65°C for 7 h. The results indicated that 0.25 M HCl was most effective for mineral removal. The hydroxyproline analysis showed an insignificant increase (0.088 mg/mL–0.103 mg/mL) from the pre-treatment stage to the final gelatine product. The physicochemical properties of the liquid gelatine, including yield (6.5 ± 0.39%), pH (6.55 ± 0.11), and gel bloom strength (174 ± 8.54 blooms) conformed to Gelatin Manufacturers Institute of America (GMIA). Functional groups confirmed the presence of gelatine-specific, such as amides A, B, I, II and III. The molecular profile is comparable to commercial gelatine, with ?1 chains at 130 kDa, ?2 chains at 115 kDa, and ? chains at 235 kDa. The gelatine derived from the scaly skin of purple-spotted bigeye exhibits promising attributes, aligning with commercial standards and highlights the potential of fishery by-products as a sustainable and halal source of gelatine.

Article Details

How to Cite
Widiyanto, Uju, Sitti Hardiyanti Rachman, & Mala Nurilmala. (2025). Preliminarily Study on Hydroxyproline Content of Purple-spotted Bigeye (Priacanthus tayenus) Scaly Skin and Its Gelatine Quality. Tropical Life Sciences Research, 36(1), 93-110. https://doi.org/10.21315/tlsr2025.36.1.6
Section
Original Article

References

Agustini T W, Widayat W, Suzery M, Darmanto Y and Mubarak I. (2020). Pengaruh jenis ikan terhadap rendemen pembuatan gelatin dari ikan dan karakteristik gelatinnya. Indonesian Journal of Halal 2(2): 46–52. https://ejournal2.undip.ac.id/index.php/ijh/article/view/7342

Ali E, Sultana S, Hamid S B A, Hossain M, Yehya W A, Kader A and Bhargava S K. (2016). Gelatin controversies in food, pharmaceuticals, and personal care products: Authentication methods, current status, and future challenges. Critical Reviews in Food Science and Nutrition 58(9): 1495–1511. https://doi.org/10.1080/10408398.2016.1264361

AOAC. (1995). Official methods of analysis of the association of official analysis chemist. Arlington, VA: The Association of Official Analytical Chemist, Inc. https://www.aoac.org/official-methods-of-analysis/

Atma Y, Seftiono H, Lioe H N and Taufik M. (2018). The hydroxyproline content of fish bone gelatin from Indonesian Pangasius catfish by enzymatic hydrolysis for producing the bioactive peptide. Biofarmasi: Asian Journal of Natural Product Biochemistry 16(2): 64–68. https://doi.org/10.13057/biofar/f160202

Azilawati M I, Hashim D M, Jamilah B and Amin I. (2015). RP-HPLC method using 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate incorporated with normalization technique in principal component analysis to differentiate the bovine, porcine and fish gelatins. Food Chemistry 172: 368–376. https://doi.org/10.1016/j.foodchem.2014.09.093

Baco N, Oslan S N H, Shapawi R, Mohhtar R A M, Noordin W N M and Huda N. (2022). Antibacterial activity of functional bioactive peptides derived from fish protein hydrolysate. IOP Conference Series: Earth and Environmental Science 967: 012019. https://doi.org/10.1088/1755-1315/967/1/012019

Badii F and Howell N K. (2006). Fish gelatin: Structure, gelling properties and interaction with egg albumen proteins. Food Hydrocolloids 20: 630–640. https://doi.org/10.1016/j.foodhyd.2005.06.006

Benjakul S, Oungbho K, Visessanguan W, Thiansilakul Y and Roytrakul S. (2009). Characteristics of gelatin from the skins of bigeye snapper, Priacanthus tayenus and Priacanthus macracanthus. Food Chemistry 116(2): 445–451. https://doi.org/10.1016/j.foodchem.2009.02.063

Chuaychan S, Benjakul S and Nuthong P. (2016). Element distribution and morphology of spotted golden goatfish fish scales as affected by demineralisation. Food Chemistry 197: 814–820. https://doi.org/10.1016/j.foodchem.2015.11.044

Coppola D, Oliviero M, Vitale G A, Lauritano C, D’Ambra I, Iannace S and de Pascale D. (2020). Marine collagen from alternative and sustainable sources: Extraction, processing and applications. Marine Drugs 18(4): 214. https://doi.org/10.3390/md18040214

Febriana L G, Stannia N A S , Fitriani A N and Putriana N A. (2021). Potensi gelatin dari tulang ikan sebagai alternatif cangkang kapsul berbahan halal: Karakteristik dan pra formulasi. Majalah Farmaseutika 6(3): 223. https://doi.org/10.24198/mfarmasetika.v6i3.33183

Feng X, Wenxue Z, Yuanyuan Q and Huaibin K. (2015). Optimization of demineralization on Cyprinus carpio haematopterus scale by response surface methodology. Journal of Food Science and Technology 52(3):1684–1690. https://doi.org/10.1007/s13197-013-1164-y

Fernianti D, Juniar H and Dwiayu Adinda N. (2020). Pengaruh massa ossein dan waktu ekstraksi gelatin dari tulang ikan tenggiri dengan perendaman asam sitrat belimbing wuluh. Jurnal Distilasi 5(2): 1–9. https://doi.org/10.32502/jd.v5i2.3027

Flammini L, Martuzzi F, Vivo V, Ghirri A, Salomi E, Bignetti E and Barocelli E. (2016). Hake fish bone as a calcium source for efficient bone mineralization. International Journal of Food Sciences and Nutrition 67(3): 265–273. https://doi.org/10.3109/09637486.2016.1150434

Forooghi E, Zade S V, Sahebi H, Abdollahi H, Sadeghi N and Jannat B. (2023). Authentication and discrimination of tissue orifin of bovin gelatin using combined supervised pattern recognition strategies. Microchemical Journal 187(3): 740–741. https://doi.org/10.1016/j.microc.2023.108417

Ghaly A E, Ramakrishnan V V, Brooks M S, Budge S M and Dave D. (2013). Fish processing wastes as a potential source of proteins, amino acids and oils: A critical review. Journal of Microbial and Biochemical Technology 5: 107–129. https://doi.org/10.4172/1948-5948.1000110

Gómez-Guillén M C, Turnay J, FernaÂndez-DõÂaz M D, Ulmo N, Lizarbe M A and Montero P. (2002). Structural and physical properties of gelatin extracted from different marine species: A comparative study. Food Hydrocolloids 16(1): 25–34. https://doi.org/10.1016/s0268-005x(01)00035-2

GMIA. (2019). Standard methods for the testing of edible gelatin. Gelatin handbook. US: Gelatin Manufacturers Institute of America.

Gudipati V. (2013). Fish gelatin: A versatile ingredient for the food and pharmaceutical industries. In S K Kim (ed.), Marine proteins and peptides: Biological activities and applications, Oxford: Wiley-Blakewell, 271–295. https://doi.org/10.1002/9781118375082.ch13

Haug T T, Mykletun A and Dahl A A. (2004). The association between anxiety, depression, and somatic symptoms in a large population: The HUNT-II study. Psychosomatic Medicine 66(6): 845–851. https://doi.org/10.1097/01.psy.0000145823.85658.0c

Kandyliari A, Mallouchos A, Papandroulakis N, Golla J P, Lam T K T, Sakellari A, Karavoltsos S, Vasiliou V and Kapsokefalou M. (2020). Nutrient composition and fatty acid and protein profiles of selected fish by-products. Foods 9(2): 1–14. https://doi.org/10.3390/foods9020190

Karlina I R and Atmaja L. (2010). Ekstrak gelatin dari tulang rawan ikan pari (Himantura gerarrdi) pada variasi larutan asam untuk perendaman. Prosiding Kimia FMIPAITS, Institut Teknologi Sepuluh, 23 November.

Kittiphattanabawon P, Benjakul S, Visessanguan W and Shahidi F. (2010). Comparative study on characteristics of gelatin from the skins of brownbanded bamboo shark and blacktip shark as affected by extraction conditions. Food Hydrocolloids 24(2–3): 164–171. https://doi.org/10.1016/j.foodhyd.2009.09.001

Laemmli U K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259): 680–685.

Lueyot A, Rungsardthong V, Vatanyoopaisarn S, Hutangura P, Wonganu B, Wongsa- Ngasri P, Charoenlappanit S, Roytrakul S, Thumthanaruk B. (2021). Influence of collagen and some proteins on gel properties of jellyfish gelatin. PLoS ONE 16: 1–14. https://doi.org/10.1371/journal.pone.0253254

Maryam S, Effendi N and Kasmah K. (2019). Produksi dan karakterisasi gelatin dari limbah tulang ayam dengan menggunakan spektrofotometer FTIR (Fourier Transform Infra Red). Majalah Farmasiutik 15(2): 96. https://doi.org/10.22146/farmaseutik.v15i2.47542

Milovanovic I and Hayes M. (2018). Marine gelatine from rest raw materials. Applied Sciences 8(12): 1–22. https://doi.org/10.3390/app8122407

Mohtar N F, Perera C and Quek S Y. (2010). Optimisation of gelatine extraction from hoki (Macruronus novaezelandiae) skins and measurement of gel strength and SDS-PAGE. Food Chemistry 122(1): 307–313. https://doi.org/10.1016/j.foodchem.2010.02.027

Muyonga J H, Cole C G B and Duodu K G. (2004). Fourier transform infrared (FTIR) spectroscopic study of acid soluble collagen and gelatin from skins and bones of young and adult Nile perch (Lates niloticus). Food Chemistry 86(3): 325–332. https://doi.org/10.1016/j.foodchem.2003.09.038

Niu L, Zhou X, Yuan C, Bai Y, Lai K, Yang F and Huang Y. (2013). Characterization of tilapia (Oreochromis niloticus) skin gelatin extracted with alkaline and different acid pretreatments. Food Hydrocolloids 33(2): 336–341. https://doi.org/10.1016/j.foodhyd.2013.04.014

Nurilmala M, Adinugraha S C, Jacoeb A M, Susilawati S and Ochiai Y. (2020). Evaluation of the properties of tuna skin gelatin as a hard capsule material. Fisheries Science 86(5): 917–924. https://doi.org/10.1007/s12562-020-01457-7

Nurilmala M, Darmawan N, Putri E A W, Jacoeb A M and Irawadi T T. (2021). Pangasius fish skin and swim bladder as gelatin sources for hard capsule material. International Journal of Biomaterials 2021: 6658002. https://doi.org/10.1155/2021/6658002

Nurilmala M, Jacoeb A M and Dzaky R A. (2017). Karakteristik gelatin kulit ikan tuna sirip kuning. Jurnal Pengolahan Hasil Perikanan Indonesia 20(2): 339. https://doi.org/10.17844/jphpi.v20i2.18049

Nurilmala M, Suryamarevita H, Husein Hizbullah H, Jacoeb A M and Ochiai Y. (2022). Fish skin as a biomaterial for halal collagen and gelatin. Saudi Journal of Biological Sciences 29(2): 1100–1110. https://doi.org/10.1016/j.sjbs.2021.09.056

Oktaviani Rz I, Uthia R, Jannah F and Yandra A. (2022). Extraction of catfish bone waste (Pangasius hypophtalmus) by utilizing an organic liquid of pineapple peel waste (Ananas comosus) into gelatin. IOP Conference Series: Earth and Environmental Science 1041: 012007. https://doi.org/10.1088/1755-1315/1041/1/012007

Ortizo R G G, Sharma V, Tsai M L, Wang J X, Sun P P, Nargotra P, Kuo CH, Chen C W and Dong C D. (2023). Extraction of novel bioactive peptides from fish protein hydrolysates by enzymatic reactions. Applied Sciences 13(9): 5768. https://doi.org/10.3390/app13095768

Osiriphun S, Wangtueai S, Rachtanapun P and Jirarattanarangsri W. (2022). Preparation of a protein drink from fish protein hydrolysate obtained from tilapia skin waste. Food Research 6(3): 21–26. https://doi.org/10.26656/fr.2017.6(3).342

Oslan S N H, Shapawi R, Mokhtar R A M, Noordin W N M and Huda N. (2022). Characterization of acid- and pepsin-soluble collagen extracted from the skin of purple-spotted bigeye snapper. Gels 8(10): 665. https://doi.org/10.3390/gels8100665

Qin D, Bi S, You X, Wang M, Cong X, Yuan C, Yu M, Cheng X and Chen X G. (2022). Development and application of fish scale wastes as versatile natural biomaterials. Chemical Engineering Journal 428: 131102. https://doi.org/10.1016/j.cej.2021.131102

Rachman S H, Santoso J and Suseno S H. (2023). Antioxidant activity and potential bioactive peptides from skin protein hydrolysate of yellowfin tuna (Thunnus albacares). Jurnal Ilmu Perikanan dan Kelautan 15(2): 248–263. https://doi.org/10.20473/jipk.v15i2.41625

Rakhmanova A, Khan Z A, Sharif R and Lü X. (2018). Meeting the requirements of halal gelatin: A mini review. MOJ Food Processing and Technology 6(6): 477–482. https://doi.org/10.15406/mojfpt.2018.06.00209

Reátegui-Pinedo N, Salirrosas D, Sánchez-Tuesta L, Quiñones C, Jáuregui-Rosas S R, Barraza G, Cabrera A, Ayala-Jara C and Martinez R M and Baby A R. (2022). Characterization of collagen from three genetic lines (Gray, Red and F1) of Oreochromis niloticus (Tilapia) skin in young and old adults. Molecules 27(3): 1123. https://doi.org/10.3390/molecules27031123

Rehman A, Tong Q, Jafari S M, Shehzad Q, Aadil R M, Iqbal W, Rashed M M A and Mushtaq B S. (2019). Carotenoid-loaded nanocarriers: A comprehensive review. Advances in Colloid and Interface Science 272: 102048. https://doi.org/10.1016/j.cis.2019.102048

Rohman A, Che Man Y B, Ismail A and Puziah H. (2011). FTIR spectroscopy combined with multivariate calibration for analysis of cod liver oil in binary mixture with corn oil. International Food Research Journal 18(2): 757–761.

Rýglová Š, Braun M, H?íbal M, Suchý T, Vöröš D. (2021). The proportion of the key components analysed in collagen-based isolates from fish and mammalian tissues processed by different protocols. Journal of Food Composition and Analysis 103: 104059. https://doi.org/10.1016/j.jfca.2021.104059

Samatra M Y, Razali U H M, Shaarani S M, Roslan J, Ramli R A, Nor Qhairul Izzreen M N. (2024). Physicochemical and functional properties of buffalo (Bubalus bubalis) bone gelatin extracted using acid pre-treatment. Future Foods 10: 100428. https://doi.org/10.1016/j.fufo.2024.100428

Samosir A S K, Idiawati N and Destiarti L. (2018). Ekstraksi gelatin dari kulit ikan toman (Channa micropelthes) dengan variasi konsentrasi dari asam asetat. Jurnal Kimia Khatulistiwa 7(3): 104–108.

Shahvalizadeh R, Ahmadi R, Davandeh I, Pezeshki A, Seyed Moslemi S A, Karimi S, Rahimi M, Hamishehkar H and Mohammadi M. (2021). Antimicrobial bionanocomposite films based on gelatin, tragacanth, and zinc oxide nanoparticles: Microstructural, mechanical, thermo-physical, and barrier properties. Food Chemistry 354: 129492. https://doi.org/10.1016/j.foodchem.2021.129492

Sigma-Aldrich. (2021). Technical bulletin. https://www.sigmaaldrich.com.

Silva T H, Moreira-Silva J, Marques A L P, Domingues A, Bayon Y and Reis R L. (2014). Marine origin collagens and its potential applications. Marine Drugs 12(12): 5881–5901. https://doi.org/10.3390/md12125881

Sukkwai S, Kijroongrojana K and Benjakul S. (2011). Skin for gelatin hydrolysate production. International Food Research Journal 18(3): 1129–1134.

Widiyanto W, Uju U and Nurilmala M. (2022). Karakteristik kolagen dari kulit dan sisik ikan coklatan, swanggi, dan kurisi sebagai bahan gelatin. Jurnal Pengolahan Hasil Perikanan Indonesia 25(3): 512–527. https://doi.org/10.17844/jphpi.v25i3.43598

Zhou P and Regenstein J M. (2005). Effects of alkaline and acid pretreatments on Alaska pollock skin gelatin extraction. Journal of Food Science 70(6): 392–396. https://doi.org/10.1111/j.1365-2621.2005.tb11435.x

Zuraida I and Pamungkas B F. (2020). Effects of acid pretreatment and extraction temperature on the properties of gelatin from striped snakehead (Channa striata) scales. AACL Bioflux 13(5): 2937–2945.