Antibacterial Potential and Phytochemical Composition in Subcritical Water Extraction of Lempoyang (Zingiber zerumbet)

Main Article Content

Nurul ‘Uyun Ahmad
Mariam Firdhaus Mad Nordin
Norrashidah Mokhtar
Tan Ka Liong
Izzati Mohamad Abdul Wahab
Muhamad Ali Muhammad Yuzir
Mardawani Mohamad

Abstract

Lempoyang, scientifically known as Zingiber zerumbet, is a plant rich in potential medicinal properties due to its numerous active ingredients. The aim of this study was to investigate the phytochemical composition and antibacterial potential of crude extracts of lempoyang obtained by subcritical water extraction (SWE). Fresh rhizomes of lempoyang were extracted using the one-factor-at-a-time (OFAT) approach with different extraction times (5 min, 10 min, 15 min, 20 min and 25 min), while other extraction parameters were kept constant. The resulting crude extracts, characterised by gas chromatography mass spectrometry (GCMS), contained 13 different constituents. Among these, 2,6,10-cycloundecatrien-1-one,2,6,9,9-tetramethyl-,(E,E,E)- or zerumbone consistently had the highest percentage area under the peak across all extraction times, ranging from 17.15% to 28.72% at retention times of 19.215 min to 19.270 min. Qualitative screening of these crude extracts revealed the presence of phenolics, alkaloids, flavonoids, terpenoids, saponins and tannins, indicating the rich phytochemical diversity of lempoyang. However, steroids and anthocyanins have not been detected. In terms of antibacterial activity, disc diffusion using the Kirby-Bauer method showed positive results for the 25-minute crude extract against Escherichia coli, yielding a zone of inhibition of 8.63 ± 0.36 mm at a concentration of 100 mg/mL/disc. None of the extracts were found to have detectable antibacterial activity against Bacillus subtilis, Staphylococcus aureus, Pseudomonas aeruginosa, Salmonella choleraesuis and Serratia marcescens. These results emphasise the potential of SWE for extracting valuable compounds from fresh lempoyang rhizomes. At the same time, they highlight that different extraction times influence the phytochemical profile and antibacterial activity of the crude extracts at higher extract concentrations.

Article Details

How to Cite
Nurul ‘Uyun Ahmad, Mariam Firdhaus Mad Nordin, Norrashidah Mokhtar, Tan Ka Liong, Izzati Mohamad Abdul Wahab, Muhamad Ali Muhammad Yuzir, & Mardawani Mohamad. (2025). Antibacterial Potential and Phytochemical Composition in Subcritical Water Extraction of Lempoyang (Zingiber zerumbet). Tropical Life Sciences Research, 36(1), 163-186. https://doi.org/10.21315/tlsr2025.36.1.9
Section
Original Article

References

Abdelmoez W, Abdelfatah R, Tayeb A and Yoshida. (2010).Extraction of cottonseed oil using subcritical water technology. AIChE Journal 57(9): 2353–2359. https://doi.org/10.1002/aic.12454

Ahmad N ’U, Nordin M F M, Mokhtar N, Wahab I M A, Mohamad M, Tan K L and Siti Nur Amir S N K M. (2023). Zingiber zerumbet: Pharmacological values of zerumbone and the extraction technology evolution. Jurnal Teknologi 85(2): 21–30. https://doi.org/10.11113/jurnalteknologi.v85.18913

Aji N, Kumala S, Mumpuni E and Rahmat D. (2022). Antibacterial activity and active fraction of Zingiber officinale Roscoe, Zingiber montanum (J. Koenig) Link Ex A., and Zingiber zerumbet (L.) Roscoe Ex Sm. against Propionibacterium acnes. Pharmacognosy Journal 14(1): 103–111. https://doi.org/10.5530/pj.2022.14.15

Akter P, Abu Ahmed A M, Promie F K and Md. Haque M E. (2023). Root exudates of fifteen common weed species: Phytochemical screening and allelopathic effects on T. aestivum L. Agronomy 13(2): 381. https://doi.org/10.3390/agronomy13020381

Amir S N K M, Siti, Nordin M F M, Shameli K, Wahab I M A and Hamid M A. (2020). Modeling and optimization of pilot-scale subcritical water extraction on Zingiber zerumbet by central composite design. IOP Conference Series: Materials Science and Engineering 778(1): 012077. https://doi.org/10.1088/1757-899x/778/1/012077

Asan N U A, Rukayadi Y and Tan G H. (2022). Antibacterial activity of sireh (Piper betle L.) leaf extracts for controlling bacterial leaf blight diseases in rice plant. Malaysian Journal of Microbiology 18(3): 291–300. https://doi.org/10.21161/mjm.221395

Ashour M L, Youssef F S, Gad H A, El-Readi M Z, Bouzabata A, Abuzeid R M, Sobeh M and Wink M. (2018). Evidence for the anti-inflammatory activity of Bupleurum marginatum (Apiaceae) extracts using in vitro and in vivo experiments supported by virtual screening. Journal of Pharmacy and Pharmacology 70(7): 952–963. https://doi.org/10.1111/jphp.12904

Asl H A and Khajenoori M. (2013). Subcritical water extraction. In H Nakajima (ed.), Mass transfer: Advances in sustainable energy and environment oriented numerical modeling. InTech [online]. https://doi.org/10.5772/54993

Auwal M S, Saka S, Mairiga I A, Sanda K A, Shuaibu A and Ibrahim A. (2014). Preliminary phytochemical and elemental analysis of aqueous and fractionated pod extracts of Acacia nilotica (Thorn mimosa). Veterinar Research Forum 5(2): 95–100.

Azelan N A, Hasham R, Awang M A, Malek R A, Musa N F and Aziz R. (2015). Antibacterial activity of Zingiber officinale and Zingiber zerumbet essential oils extracted by using turbo extractor distillator (TED). Jurnal Teknologi 77(3): 43–47. https://doi.org/10.11113/jt.v77.6003

Basumatary A R. (2016). Preliminary phytochemical screening of some compounds from plant stem bark extracts of Tabernaemontana divaricata Linn. used by Bodo Community at Kokrajhar District, Assam, India. Archives of Applied Science Research 8(8): 47–52. http://scholarsresearchlibrary.com/archive.html

Bauer A W, Kirby W M M, Sherris J C and Turck M. (1966). Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology 45(4): 493–496. https://doi.org/10.1093/ajcp/45.4_ts.493

Carr A G, Mammucari R and Foster N R. (2011). A review of subcritical water as a solvent and its utilisation for the processing of hydrophobic organic compounds. Chemical Engineering Journal 172(1): 1–17. https://doi.org/10.1016/j.cej.2011.06.007

Chuah X Q, Mun W and Teo S S. (2017). Comparison study of anti-microbial activity between crude extract of Kappaphycus alvarezii and Andrographis paniculata. Asian Pacific Journal of Tropical Biomedicine 7(8): 729–731. https://doi.org/10.1016/j.apjtb.2017.07.003

Dash B, Ray A, Sahoo A, Jena S, Singh S, Kar B, Patnaik J, Panda P C, Mohanty S and Nayak S. (2020a). Quantitative and chemical fingerprint analysis for quality control of Zingiber zerumbet based on HPTLC combined with chemometric methods. Plant Biosystems – An International Journal Dealing with All Aspects of Plant Biology 155(4): 711–720. https://doi.org/10.1080/11263504.2020.1779840

Dash B, Sahoo A, Ray A, Jena S and Nayak S. (2020b). Identification of chemical constituents of Zingiber zerumbet rhizome extract using GC/MS. Journal of Biologically Active Products from Nature 10(5): 411–417. https://doi.org/10.1080/22311866.2020.1821775

Epand R M, Walker C, Epand R F and Magarvey N A. (2016). Molecular mechanisms of membrane targeting antibiotics. Biochimica et Biophysica Acta (BBA): Biomembranes 1858(5): 980–987. https://doi.org/10.1016/j.bbamem.2015.10.018

Essien S O, Young B and Baroutian S. (2020). Recent advances in subcritical water and supercritical carbon dioxide extraction of bioactive compounds from plant materials. Trends in Food Science and Technology 97: 156–169. https://doi.org/10.1016/j.tifs.2020.01.014

Gul R, Jan S U, Faridullah S, Sherani S and Jahan N. (2017). Preliminary phytochemical screening, quantitative analysis of alkaloids, and antioxidant activity of crude plant extracts from Ephedra intermedia indigenous to Balochistan. The Scientific World Journal 2017: 1–7. https://doi.org/10.1155/2017/5873648

Gupta M K, Singh R and Rangan L. (2023). Phytochemical screening, antibacterial, antibiofilm and quorum sensing inhibiting activity of Alpinia nigra leaf extract against infectious pathogen Pseudomonas aeruginosa PAO1. Food Control 143: 109327. https://doi.org/10.1016/j.foodcont.2022.109327

Hanafi N S, Hasham R, Othman N Z and Sarmidi M R. (2021). Effect of osmotic dehydration combined with citric acid on bioactive compounds in freeze-dried MD2 pineapple. Asia Pacific Journal of Molecular Biology and Biotechnology 2021: 46–56. https://doi.org/10.35118/apjmbb.2021.029.4.05

Haque M A and Jantan I. (2017). Recent updates on the phytochemistry, pharmacological, and toxicological activities of Zingiber zerumbet (L.) Roscoe Ex Sm. Current Pharmaceutical Biotechnology 18(9): 1–21. https://doi.org/10.2174/1389201018666171115115458

Hasan N ’A, Ariffin S, Azzeme A M, Hasbullah N I, Nawahwi M Z and Zemry I H B. (2023). Preliminary phytochemical screening of medicinal herb, sambau paya (Chloranthus erectus). Materials Today: Proceedings 88: 6–9. https://doi.org/10.1016/j.matpr.2023.01.365

Hashemi S R, Zulkifli I, Bejo M H, Farida A and Somchit M N. (2008). Acute toxicity study and phytochemical screening of selected herbal aqueous extract in broiler chickens. International Journal of Pharmacology 4(5): 352–360. https://doi.org/10.3923/ijp.2008.352.360

Helen M, Nizzy A and Jegatheesh T. (2009). Phytochemical characterization and antimicrobial activity of shampoo ginger (Zingiber zerumbet) from Tamil Nadu. Asian Journal of Microbiology Biotechnology and Environmental Sciences 11(3): 625–628.

Huong L T, Chinh H V, An N T G, Viet N T, Hung N H, Thuong N T H, Giwa-Ajeniya A O and Ogunwande I A. (2020). Zingiber zerumbet rhizome essential oil: Chemical composition, antimicrobial and mosquito larvicidal activities. European Journal of Medicinal Plants 2020: 1–12. https://doi.org/10.9734/ejmp/2019/v30i430197

Ibáñez M D, Sánchez-Ballester N M and Blázquez M A. (2023). Healthy zerumbone: From natural sources to strategies to improve its bioavailability and oral administration. Plants 12(1): 5. https://doi.org/10.3390/plants12010005

Jubeh B, Breijyeh Z and Karaman R. (2020). Resistance of gram-positive bacteria to current antibacterial agents and overcoming approaches. Molecules 25(12): 2888. https://doi.org/10.3390/molecules25122888

Kader G, Nikkon F, Rashid M A and Yeasmin T. (2011). Antimicrobial activities of the rhizome extract of Zingiber zerumbet Linn. Asian Pacific Journal of Tropical Biomedicine 1(5): 409–412. https://doi.org/10.1016/s2221-1691(11)60090-7

Lako J, Trenerry V, Wahlqvist M, Wattanapenpaiboon N, Sotheeswaran S and Premier R. (2007). Phytochemical flavonols, carotenoids and the antioxidant properties of a wide selection of Fijian fruit, vegetables and other readily available foods. Food Chemistry 101(4): 1727–1741. https://doi.org/10.1016/j.foodchem.2006.01.031

Liu W Y, Tzeng T F and Liu I M. (2017). Healing potential of zerumbone ointment on experimental full-thickness excision cutaneous wounds in rat. Journal of Tissue Viability 26(3): 202–207. https://doi.org/10.1016/j.jtv.2017.04.002

Malik R A, Saad M M and Tiwari S. (2019). Effect of extraction time and solvent power on phytochemical screening and antioxidant activity of Momordica charantia L. fruit extracts. Asian Journal of Chemistry 31(3): 647–650. https://doi.org/10.14233/ajchem.2019.21715

Minarni M, Asyhar R, Juliana D, Yudha Y S and Nurcholis W. (2023). Short communication: Analysis of rhizome color and phytochemical content of 10 accessions of Curcuma zanthorrhiza Roxb. in Jambi, Indonesia. Biodiversitas Journal of Biological Diversity 24(1): 149–151. https://doi.org/10.13057/biodiv/d240119

Moreira d S T, Pinheiro C D, Puccinelli O P, Pinheiro C C and Soares P G. (2018). Zerumbone from Zingiber zerumbet (L.) Smith: A potential prophylactic and therapeutic agent against the cariogenic bacterium Streptococcus mutans. BMC Complementary and Alternative Medicine 18(301): 1–9. https://doi.org/10.1186/s12906-018-2360-0

Nik Norulaini N, Anuar O, Omar A, Alkarkhi A, Setianto W, Fatehah M, Sahena F and Zaidul I. (2009). Optimization of SC–CO2 extraction of Zerumbone from Zingiber zerumbet (L) Smith. Food Chemistry 114(2): 702–705. https://doi.org/10.1016/j.foodchem.2008.09.075

Norfazlina M N, Farida Zuraina M Y, Rajab N F, Mohd Nazip S, Rumiza A R, Suziana Zaila C F, Lek Mun L, Nurshahirah N and Florinsiah L. (2014). Cytotoxicity study of Nigella sativa and Zingiber zerumbet extracts, Thymoquinone and Zerumbone isolated on human myeloid leukemia (HL60) cell. The Open Conference Proceedings Journal 4(1): 99–107. https://doi.org/10.2174/2210289201304020099

Obouayeba S, Diarrassouba M, Soumahin E F, Essehi J L, Okoma M K, Adou C B Y and Obouayeba A P. (2021). Efficient tapping systems of Hevea brasiliensis clones with active metabolism IRCA 18, IRCA 111, IRCA 130, PB 235 and PB 260 in Côte d’Ivoire. Cutting-Edge Research in Agricultural Sciences 6: 50–66. https://doi.org/10.9734/bpi/cras/v6/2019e

Padalia R C, Verma R S, Chauhan A, Singh V R, Goswami P, Singh S, Verma S K, Luqman S, Chanotiya C S and Darokar M P. (2018). Zingiber zerumbet (L.) Roscoe Ex Sm. from Northern India: Potential source of Zerumbone rich essential oil for antiproliferative and antibacterial applications. Industrial Crops and

Products 112: 749–754. https://doi.org/10.1016/j.indcrop.2018.01.006

Preshahdin N A, Jani N A and Iberahim R. (2023). Phytochemicals and antibacterial activity of Zingiber zerumbet growing in Negeri Sembilan, Malaysia. Journal of Science and Mathematics Letters 11(1): 20–29. https://doi.org/10.37134/jsml.vol11.1.3.2023

Raj S, Harshitha K and Nair R A. (2022). Anti-microbial and cytotoxic activity of ZzAMP, a Serine Protease Inhibitor (SPI) with nutraceutical potential from rhizomes of medicinal plant, Zingiber zerumbet. Natural Product Research 36(24): 6375–6380. https://doi.org/10.1080/14786419.2022.2032046

Ramzan M and Zeshan B. (2023). Assessment of the phytochemical analysis and antimicrobial potentials of Zingiber zerumbet. Molecules 28(1): 409. https://doi.org/10.3390/molecules28010409

Rao US M, Abdurrazak M and Mohd K S. (2016). Hytochemical screening, total flavonoid and phenolic content assays of various solvent extracts of tepal of Musa Paradisiaca. Malaysian Journal of Analytical Science 20(5): 1181–1190. https://doi.org/10.17576/mjas-2016-2005-25

Rawat A, Kholiya S, Chauhan A, Venkatesha K T, Kumar D, Upadhyay R K and Padalia R C. (2023). Chemical variability on Zingiber zerumbet (L.) Roscoe Ex Sm. essential oil with respect to different comminution methods. Biochemical Systematics and Ecology 106: 104574. https://doi.org/10.1016/j.bse.2022.104574

Reygaert W C. (2018). An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiology 4(3): 482–501. https://doi.org/10.3934/microbiol.2018.3.482

Saba A, Rehan N and Aziz S S. (2023). Phytochemical analysis of unani herbal formulation ‘Mazher-Ul-Ajaib. Journal of Pharmacognosy and Phytochemistry 12(1): 105–117. https://doi.org/10.22271/phyto.2023.v12.i1b.14550

Sam M F R, Hamid A, Ghazali A R, Louis S R and Budin S B. (2019). Protective effects of Zingiber zerumbet ethyl acetate extract on hydrogen peroxide-induced damage of red blood cells. Sains Malaysiana 48(4): 781–790. https://doi.org/10.17576/jsm-2019-4804-10

Sidahmed H M A, Hashim N M, Abdulla M A, Ali H M, Mohan S, Abdelwahab S I, Taha M M E, Loke M F and Vadivelu J. (2015). Antisecretory, gastroprotective, antioxidant and anti-helicobcter Pylori activity of Zerumbone from Zingiber zerumbet (L.) Smith. PLoS ONE 13: e0121060. https://doi.org/10.1371/journal.pone.0121060

Sithara T, Dhanya B P, Arun K B, Sini S, Dan M, Vasu R K and Nisha P. (2018). Zerumbone, a cyclic sesquiterpene from Zingiber zerumbet induces apoptosis, cell cycle arrest, and antimigratory effects in SW480 colorectal cancer cells. Journal of Agricultural and Food Chemistry 66(3): 602–612. https://doi.or/10.1021/acs.jafc.7b04472

Tan J W Daud A I and Chau L T. (2018). Major bioactive compounds in essential oils extracted from the rhizomes of Zingiber zerumbet (L) Smith: A mini-review on the anti-allergic and immunomodulatory properties. Frontiers in Pharmacology 9: 652. https://doi.org/10.3389/fphar.2018.00652

Tian M, Wu X, Hong Y, Wang H, Deng G and Zhou Y. (2020). Comparison of chemical composition and bioactivities of essential oils from fresh and dry rhizomes of Zingiber zerumbet (L.) Smith. BioMed Research International 2020: 1–9. https://doi.org/10.1155/2020/9641284

Truong, D-H, Nguyen D H, Ta N T A, Bui A V, Do T H and Nguyen H C. (2019). Evaluation of the use of different solvents for phytochemical constituents, antioxidants, and in vitro anti-inflammatory activities of Severinia buxifolia. Journal of Food Quality 2019: 1–9. https://doi.org/10.1155/2019/8178294

Tzima K, Brunton N and Rai D. (2018). Qualitative and quantitative analysis of polyphenols in Lamiaceae plants: A review. Plants 7(2): 25. https://doi.org/10.3390/plants7020025

Ungsurungsie M, Suthienkul O and Paovalo C. (1982). Mutagenicity screening of popular Thai spices. Food and Chemical Toxicology 20(5): 527–530. https://doi.org/10.1016/s0278-6915(82)80059-8

Wahab I M A, Nordin M F M, Zaini N, Shameli K, Amir S N K M, Ahmad N ‘U and Mokhtar N. (2022). A comparative study on zerumbone concentration, radical scavenging activity and total phenolic content of Zingiber zerumbet extracted via green and conventional extraction. Journal of Advanced Research in Applied Sciences and Engineering Technology 27(1): 1–8. https://doi.org/10.37934/araset.27.1.18

Woo H J, Yang J Y, Lee P, Kim J-B and Kim S-H. (2021). Zerumbone inhibits helicobacter pylori urease activity. Molecules 26(9): 2663. https://doi.org/10.3390/molecules26092663

Zhou X and Li Y. (2015). Basic biology of oral microbes. In Atlas of oral microbiology. Academic Press, 1–14. https://doi.org/10.1016/B978-0-12-802234-4.00001-X