In vitro Antiplasmodial and Molecular Docking Studies of The Chemical Constituent Isolated from the Bark of Diospyros lanceifolia (Ebenaceae)

Main Article Content

Ibrahim Dankane Bafarawa
Muhammad Solehin Abd Ghani
Arba Pramundita Ramadani
Shofiatul Fuadah
Sista Werdyani
Unang Supratman
Muhammad Bisyrul Hafi Othman
Mohamad Nasir Mohamad Ibrahim
Khalijah Awang
Marc Litaudon
Habibah A. Wahab
Mohamad Nurul Azmi

Abstract

The phytochemical investigations of the ethyl acetate bark extract of Diospyros lanceifolia have led to the isolation of eight compounds, namely lupeol (1), betulin (2), ?-sitosterol (3), oleic acid (4), ?-amyrin acetate (5) glyceryl trilinoleate (6), ?-amyrin (7) and shinanolone (8). The structures of all compounds were established using various spectroscopic techniques such as 1D and 2D-NMR, FT-IR and HRESIMS, which were then compared with reported literature for validation. All compounds isolated from this plant were screened for an in vitro study against Plasmodium falciparum FCR3 followed by an in silico molecular docking study with the PfATP6 protein. The in vitro results revealed that five compounds exhibited strong to good activity (IC50 < 10 ?M). In order of potency, these compounds include 5, 3, 6, 1 and 4 with IC50 values of 0.3 ± 0.3, 0.3 ± 0.3, 1.9 ± 2.2, 4.4 ± 7.4 and 8.4 ± 4.9 ?M, respectively. Compounds 5 and 3 showed the strongest activity compared to the control drugs artemisinin and chloroquine, with the IC50 of0.7 ± 0.3 ?M and 10.3 ± 2.9 ?M, respectively. The in silico molecular docking simulations showed that all active compounds from the in vitro study displayed good binding affinity to the PfATP6 protein binding site, with compounds 3, 1 and 5 demonstrating greater binding affinity compared to the other compounds tested, including artemisinin and chloroquine. All compounds exhibited several hydrophobic interaction modes with amino acids of PfATP6 residues. Interestingly, all compounds exhibited hydrogen bonding with ASN1039 residue, except compound 3. The in silico study of these compounds supports the in vitro antiplasmodial activity findings, suggesting that these compounds are potential lead candidates for the development of new antiplasmodial drugs.

Article Details

How to Cite
Ibrahim Dankane Bafarawa, Muhammad Solehin Abd Ghani, Arba Pramundita Ramadani, Shofiatul Fuadah, Sista Werdyani, Unang Supratman, Muhammad Bisyrul Hafi Othman, Mohamad Nasir Mohamad Ibrahim, Khalijah Awang, Marc Litaudon, Habibah A. Wahab, & Mohamad Nurul Azmi. (2025). In vitro Antiplasmodial and Molecular Docking Studies of The Chemical Constituent Isolated from the Bark of Diospyros lanceifolia (Ebenaceae). Tropical Life Sciences Research, 36(2), 203-227. https://doi.org/10.21315/tlsr2025.36.2.10
Section
Original Article

References

Abd Ghani M S, Abu Bakar N A, Ramadani A P, Nugraha A T, Awang K, Che Omar M T and Mohamad Taib M N A. (2024). Hemisynthesis of pentacyclic triterpenoids from Diospyros foxworthy with in vitro and in silico antimalarial evaluation. Current Organic Chemistry 28(10): 799–814. https://doi.org/10.2174/0113852728294047240315063815

Adzu B, Amos S, Dzarma S, Muazza, I and Gamaniel K S. (2002). Pharmacological evidence favoring the folkloric use of Diospyros mespiliformis Hochst in the relief of pain and fever. Journal of Ethnopharmacology 82(2–3): 191–195. https://doi.org/10.1016/S0378-8741(02)00179-4

Ahmed S A, Rahman A A, Elsayed K N M, Abd El-Mageed H R, Mohamed H S and Ahmed S A. (2021). Cytotoxic activity, molecular docking, pharmacokinetic properties, and quantum mechanics calculations of the brown macroalga Cystoseira trinodis compounds. Journal of Biomolecular Structure and Dynamics 39(11): 3855–3873. https://doi.org/10.1080/07391102.2020.1774418

Aung H H, Chia L S, Goh N K, Chia T F, Ahmed A A, Pare P W and Mabry T J. (2002). Phenolic constituents from the leaves of the carnivorous plant Nepenthes gracilis. Fitoterapia 73(5): 445–447. https://doi.org/10.1016/S0367-326X(02)00113-2

Ayepola O O, Olasehinde G I, Adedeji O A, Adeyemi O O and Onile-Ere O A. (2018). In-vitro antimicrobial activity of crude extracts of Diospyros monbuttensis. African Journal of Clinical and Experimental Microbiology 19(2): 84–87. https://doi.org/10.4314/ajcem.v19i2.2

Bafarawa I D, Abd Ghani M S, Mohamad Taib M N A, Othman M B H, Ibrahim M N, Che Omar M T, Ramadani A P, Salsabila D N, Nugraha A T, Werdyani S, Awang K and Litaudon M. (2024). Isolation, characterization, molecular docking, and antimalarial activity of chemical constituents of Diospyros adenophora. Malaysian Journal of Chemistry 26(1): 120–133. https://doi.org/10.55373/mjchem.v26i1.120

Chaniad P, Mungthin M, Payaka A, Viriyavejakul P and Punsawad C. (2021). Antimalarial properties and molecular docking analysis of compounds from Dioscorea bulbifera L. as new antimalarial agent candidates. BMC Complementary Medicine and Therapies 21(1): 1–10. https://doi.org/10.1186/s12906-021-03317-y

Comer E, Beaudoin J A, Kato N, Fitzgerald M E, Heidebrecht R W, Lee IV M D and Schreiber S L. (2014). Diversity-oriented synthesis-facilitated medicinal chemistry: Toward the development of novel antimalarial agents. Journal of Medicinal Chemistry 57(20): 8496–8502. https://doi.org/10.1021/jm500994n

da Silva G N, Maria N R, Schuck D C, Cruz L N, de Moraes M S, Nakabashi M, Graebin C, Gosmann G, Garcia C R S and Gnoatto S C B. (2013). Two series of new semisynthetic triterpene derivatives: Differences in anti-malarial activity, cytotoxicity and mechanism of action. Malaria Journal 12: 1–7. https://doi.org/10.1186/1475-2875-12-89

Diedrich D, Wildner A C, Silveira T F, Silva G N, Dos Santos F, da Silva E F and Gnoatto S. C. (2018). SERCA plays a crucial role in the toxicity of a betulinic acid derivative with potential antimalarial activity. Chemico-Biological Interactions 287: 70–77. https://doi.org/10.1016/j.cbi.2018.03.014

Dohutia C, Chetia D, Gogoi K and Sarma K. (2017). Design, in silico and in vitro evaluation of curcumin analogues against Plasmodium falciparum. Experimental Parasitology 175: 51–58. https://doi.org/10.1016/j.exppara.2017.02.006224

du Preez-Bruwer I, Mumbengegwi D R and Louw S. (2022). In vitro antimalarial properties and chemical composition of Diospyros chamaethamnus extracts. South African Journal of Botany 149: 290–296. https://doi.org/10.1016/j.sajb.2022.06.006

Dzouemo L C, Mouthé Happi G, Ahmed S A, Tekapi Tsopgni W D, Nde Akuma M, Salau S, Ngeufa Happi E and Wansi J D. (2022). Chemical constituents of the bark of Zanthoxylum gilletii (Rutaceae) and their in vitro antiplasmodial and molecular docking studies. Journal of Chemistry 2022: 1–10. https://doi.org/10.1155/2022/1111817

Eberhardt J, Santos-Martins D, Tillack A F and Forli S. (2021). AutoDock Vina 1.2. 0: New docking methods, expanded force field, and python bindings. Journal of Chemical Information and Modeling 61(8): 3891–3898. https://doi.org/10.1021/acs.jcim.1c00203

Feumo Feusso H, Dieu Dongmo J D, Akak C M, Lateef M, Ahmed A, Blaise Azebaze A G and Vardamides J C. (2019). Biological activities of the methanolic extracts and compounds from leaves and twigs of Diospyros zenkeri (Gürke) F. White (Ebenaceae). Trends in Phytochemical Research 3(2): 117–122.

Fotie J, Bohle D S, Leimanis M L, Georges E, Rukunga G and Nkengfack A E. (2006). Lupeol long-chain fatty acid esters with antimalarial activity from Holarrhena floribunda. Journal of Natural Products 69(1): 62–67. https://doi.org/10.1021/np050315y

Ghani M S A, Zakaria N, Mohd Arshad N, Kamarulzaman E E, Awang K, Litaudon M and Taib M N A. (2022). Pentacyclic triterpenoids isolated from Diospyros foxworthyi Bakh. (Ebenaceae) with its cytotoxic activity against HT-29 human colon cancer cell. Malaysian Journal of Chemistry 24(4): 19–25. https://doi.org/10.55373/mjchem.v24i4.19

Gnoatto S C, Susplugas S, Dalla Vechia L, Ferreira T B, Dassonville-Klimpt A, Zimmer K R and Sonnet P. (2008). Pharmacomodulation on the 3-acetylursolic acid skeleton: Design, synthesis, and biological evaluation of novel N-{3-[4-(3-aminopropyl) piperazinyl] propyl}-3-O-acetylursolamide derivatives as antimalarial agents. Bioorganic and Medicinal Chemistry 16(2): 771–782. https://doi.org/10.1016/j.bmc.2007.10.031

Gogoi K, Chetia D, Barua N C, Gogoi N and Dohutia C. (2019). In vitro antimalarial evaluation and molecular docking analysis of Mannich base curcumin analogues against the artemisinin target PfATP6. Asian Journal of Pharmacy and Pharmacology 5(1): 120–128. https://doi.org/10.31024/ajpp.2019.5.1.17

Kalita D, Devi N and Baishya D. (2016). Foliar nutraceutical and antioxidant property of Diospyros lanceifolia Roxb (Ebenaceae): An important medicinal plant of Assam, India. International Advanced Research Journal in Science, Engineering and Technology 3(3): 20–22.

Karagöz A Ç, Leidenberger M, Hahn F, Hampel F, Friedrich O, Marschall M and Tsogoeva S B. (2019). Synthesis of new betulinic acid/betulin-derived dimers and hybrids with potent antimalarial and antiviral activities. Bioorganic and Medicinal Chemistry 27(1): 110–115. https://doi.org/10.1016/j.bmc.2018.11.018

Karan S K, Mondal A, Mishra S K, Pal D and Rout K K. (2013). Antidiabetic effect of Streblus asper in streptozotocin-induced diabetic rats. Pharmaceutical Biology 51(3): 369– 375. https://doi.org/10.3109/13880209.2012.730531

Kichu M. (2015). Documentation and biological and phytochemical analysis of Chungtia medicinal plants of Nagaland, India. PhD diss., Macquarie University. https://doi.org/10.25949/19434758.v1225

Kumar S, Bhardwaj T R, Prasad D N and Singh R K. (2018). Drug targets for resistant malaria: Historic to future perspectives. Biomedicine & Pharmacotherapy 104: 8–27. https://doi.org/10.1016/j.biopha.2018.05.009

Machado V R, Sandjo L P, Pinheiro G L, Moraes M H, Steindel M, Pizzolatti M G and Biavatti M W. (2018). Synthesis of lupeol derivatives and their antileishmanial and antitrypanosomal activities. Natural Product Research 32(3): 275–281. https://doi.org/10.1080/14786419.2017.1353982

Malewska T. (2022). Biological and phytochemical analysis of three medicinally important plants: Prunus persica, Diospyros lanceifolia, and Holboellia latifolia. PhD diss., Macquarie University.

Masia K J, Mhlongo N N, Pooe O J, Ibrahim M A, Kappo A P and Simelane M B. (2024). Antiplasmodial potential of compounds isolated from Ziziphus mucronata and their binding to Plasmodium falciparum HGXPRT using biophysical and molecular docking studies. Naunyn-Schmiedeberg’s Archives of Pharmacology 2024: 1–11. https://doi.org/10.1007/s00210-024-03611-9

Melariri P, Campbell W, Etusim P and Smith P. (2012). In vitro and in vivo antimalarial activity of linolenic and linoleic acids and their methyl esters. Advanced Studies in Biology 4(7): 333–349.

Moore C M, Wang J, Lin Q, Ferreira P, Avery M A, Elokely K, Staines H M and Krishna S. (2022). Selective inhibition of Plasmodium falciparum ATPase 6 by artemisinins and identification of new classes of inhibitors after expression in yeast. Antimicrobial Agents and Chemotherapy 66(5): 1–15. https://doi.org/10.1128/aac.02079-21

Morris G M, Huey R, Lindstrom W, Sanner M F, Belew R K, Goodsell D S and Olson A J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry 30(16): 2785–2791. https://doi.org/10.1002/jcc.21256

Nweze C, Ibrahim H and Ndukwe G I. (2019). Beta-sitosterol with antimicrobial properties from the stem bark of pomegranate (Punica granatum Linn). Journal of Applied Sciences and Environmental Management 23(6): 1045–1049. https://doi.org/10.4314/jasem.v23i6.7

Pan W H, Xu X Y, Shi N, Tsang S W and Zhang H J. (2018). Antimalarial activity of plant metabolites. International Journal of Molecular Sciences 19(5): 1–40. https://doi.org/10.3390/ijms19051382

Peyrat L A, Eparvier V, Eydoux C, Guillemot J C, Stien D and Litaudon M. (2016). Chemical diversity and antiviral potential in the pantropical Diospyros genus. Fitoterapia 112: 9–15. https://doi.org/10.1016/j.fitote.2016.04.017

Plucinski M M, Talundzic E, Morton L, Dimbu P R, Macaia A P, Fortes F, Goldman I, Lucchi N, Stennies G, MacArthur J R and Udhayakumar V. (2015). Efficacy of artemether-lumefantrine and dihydroartemisinin-piperaquine for treatment of uncomplicated malaria in children in Zaire and Uíge provinces, Angola. Antimicrobial Agents and Chemotherapy 59(1): 437–443. https://doi.org/10.1128/aac.04181-14

POWO (2025). Diospyros L.: Plants of the World Online: Kew Science. https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:326017-2 (accessed on 12 January 2025).

Rathore K, Singh V K, Jain P, Rao S P, Ahmed Z and Singh V D. (2014). In vitro and in vivo antiadipogenic, hypolipidemic, and antidiabetic activity of Diospyros melanoxylon (Roxb). Journal of Ethnopharmacology 155(2): 1171–1176. https://doi.org/10.1016/j.jep.2014.06.050

Rauf A, Uddin G, Siddiqui B S and Khan H. (2015). In vivo sedative and muscle relaxants activity of Diospyros lotus L. Asian Pacific Journal of Tropical Biomedicine 5(4): 277–280. https://doi.org/10.1016/S2221-1691(15)30345-2226

Rauf A, Uysal S, Hadda T B, Uddin G, Nawaz M A, Khan H, Siddiqui B S, Raza M, Bawazeer S and Zengin G. (2017). In vivo and in silico sedative-hypnotic like activity of 7-methyl juglone isolated from Diospyros lotus L. Biomedicine and Pharmacotherapy 87: 678–682. https://doi.org/10.1016/j.biopha.2017.01.021

Ruphin F P, Baholy R, Emmanuel R, Amelie R, Martin M T and Koto-te-Nyiwa, N. (2014). Isolation and structural elucidation of cytotoxic compounds from the root bark of Diospyros quercina (Baill.) endemic to Madagascar. Asian Pacific Journal of Tropical Biomedicine 4(3): 169–175. https://doi.org/10.1016/S2221-1691(14)60227-6

Salas-Burgos A, Iserovich P, Zuniga F, Vera J C and Fischbarg J. (2004). Predicting the three-dimensional structure of the human facilitative glucose transporter glut1 by a novel evolutionary homology strategy: Insights on the molecular mechanism of substrate migration, and binding sites for glucose and inhibitory molecules. Biophysical Journal 87(5): 2990–2999. https://doi.org/10.1529/biophysj.104.047886

Shibeshi M A, Kifle Z D and Atnafie S A. (2020). Antimalarial drug resistance and novel targets for antimalarial drug discovery. Infection and Drug Resistance 13: 4047– 4060. https://doi.org/10.2147/IDR.S279433

Sikam K G, Happi G M, Ahmed S A, Wakeu B N K, Meikeu L Z, Salau S and Wansi J D. (2022). In vitro antiplasmodial, molecular docking and pharmacokinetics studies of specialized metabolites from Tetrapleura tetraptera (Fabaceae). South African Journal of Botany 151: 949–959. https://doi.org/10.1016/j.sajb.2022.11.021

Singh A, Mukhtar H M, Kaur H and Kaur L. (2020). Investigation of antiplasmodial efficacy of lupeol and ursolic acid isolated from Ficus benjamina leaves extract. Natural Product Research 34(17): 2514–2517. https://doi.org/10.1080/14786419.2018.1540476

Smilkstein M, Sriwilaijaroen N, Kelly J X, Wilairat P and Riscoe M, (2004). Simple and inexpensive fluorescence-based technique for high-throughput antimalarial drug screening. Antimicrobial Agents and Chemotherapy 48(5): 1803–1806. https://doi.org/10.1128/aac.48.5.1803-1806.2004

Takahashi O, Masuda Y, Muroya A and Furuya T. (2010). Theory of docking scores and its application to a customizable scoring function. SAR and QSAR in Environmental Research 21(5–6): 547–558. https://doi.org/10.1080/1062936X.2010.502299

Tameye N S J, Akak C M, Tabekoueng G B, Mkounga P, Bitchagno G T M, Lenta B N and Nkengfack A E. (2022). Chemical constituents from Diospyros fragrans Gürke (Ebenaceae). Biochemical Systematics and Ecology 100: 1–7. https://doi.org/10.1016/j.bse.2021.104373

Tangmouo J G, Ho R, Matheeussen A, Lannang A M, Komguem J, Messi B B, Maes L and Hostettmann K. (2010). Antimalarial activity of extract and norbergenin derivatives from the stem bark of Diospyros sanza-minika A. Chevalier (Ebenaceae). Phytotherapy Research 24(11): 1676–1679. https://doi.org/10.1002/ptr.3192

Thing T, Yean Shan L, Siow Ping T, Awang K, Nafiah M A and Ahmad K. (2014). Phytochemical study of stem bark from Alstonia spathulata Bl. (Apocynaceae). EDUCATUM: Journal of Science, Mathematics, and Technology 1(2): 8–15.

Trager W and Jensen J. (1976). Human malaria parasites in continuous culture. Science 193(4254): 673–675. https://doi.org/10.1126/science.781840

Trott O and Olson A J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry 31(2): 455–461. https://doi.org/10.1002/jcc.21334227

Tsamesidis I, Mousavizadeh F, Egwu C O, Amanatidou D, Pantaleo A, Benoit-Vical F and Giannis A. (2022). In vitro and in silico antimalarial evaluation of FM-AZ, a new artemisinin derivative. Medicines 9(2): 1–12. https://doi.org/10.3390/medicines9020008

Wisetsai A, Schevenels F T and Lekphrom R. (2021). Chemical constituents and their biological activities from the roots of Diospyros filipendula. Natural Product Research 35(16): 2739–2743. https://doi.org/10.1080/14786419.2019.1656630

World Health Organization (2024). World malaria report 2024. World Health Organization.

Yang J, He Y, Li Y, Zhang X, Wong Y K, Shen S and Wang J. (2020). Advances in the research on the targets of anti-malaria actions of artemisinin. Pharmacology and Therapeutics 216: 107697. https://doi.org/10.1016/j.pharmthera.2020.107697

Yusuf A J, Abdullahi M I, Nasir I, Yunusa A, Alebiosu C O and Muhammad A A. (2023). Isolation and characterization of prophylactic antimalarial agents from Ochna kibbiensis leaves. Drugs and Drug Candidates 2(1): 37–51. https://doi.org/10.3390/ddc2010003