Isolation of Bacteria from Lead-Contaminated Soil and Bacterial Interaction Test with Plant Growing on Lead-Amended Media

Main Article Content

Dian Siswanto
Nurul Istiqomah
Azizuddin Muhammad Nashafi
Mukhaddam Muhammad
Fathul Mukaromah
Irfan Mustafa

Abstract

The study investigated bacterial isolation from lead-contaminated soil, revealing the lower bacterial density compared to agricultural soil bacteria, indicating soil degradation. Among the isolated bacteria, three isolates with codes L03, L16, and L19 exhibited high tolerance to lead concentrations up to 1,500 mg/L. Selected isolates demonstrated the ability to produce Indole-3-Acetic Acid (IAA) hormone, with one strain notably producing the highest IAA concentration. Furthermore, three isolates exhibited significant lead bioaccumulation efficiency. Molecular identification revealed Lysinibacillus fusiformis as the highest IAA-producing strain and lead accumulator. Plant growth experiments analysed the bacteria's potency to alleviate the heavy metal stress on Codiaeum variegatum, Dracaena reflexa and Jasminum humile. Additionally, bacterial addition decreased lead absorption only by D. reflexa, potentially through biosorption and bioaccumulation mechanisms. Integrating L. fusiformis into phytoremediation strategies could offer an effective and sustainable approach for remediating Pb-contaminated environments.

Article Details

How to Cite
Dian Siswanto, Nurul Istiqomah, Azizuddin Muhammad Nashafi, Mukhaddam Muhammad, Fathul Mukaromah, & Irfan Mustafa. (2025). Isolation of Bacteria from Lead-Contaminated Soil and Bacterial Interaction Test with Plant Growing on Lead-Amended Media. Tropical Life Sciences Research, 36(2), 229-252. https://doi.org/10.21315/tlsr2025.36.2.11
Section
Original Article

References

Afzal M R, Naz M, Wan J, Dai Z, Ullah R, Rehman S ur and Du D. (2023). Insights into the mechanisms iIvolved in lead (Pb) tolerance in invasive plants: The current status of understanding. Plants 12(11): 2084. https://doi.org/10.3390/plants12112084

Ahemad M. (2015). Enhancing phytoremediation of chromium-stressed soils through plant-growth-promoting bacteria. Journal of Genetic Engineering and Biotechnology 13(1): 51–58. https://doi.org/10.1016/j.jgeb.2015.02.001

Arifiyanto A, Apriyanti F D, Purwaningsih P, Kalqutny S H, Agustina D, Surtiningsih T, Shovitri M and Zulaika E. (2017). Lead (Pb) bioaccumulation; Genera Bacillus isolate S1 and SS19 as a case study. AIP Conference Proceedings, 1854: 020003. https://doi.org/10.1063/1.4985394

Aslam F, Yasmin A and Sohail S. (2020). Bioaccumulation of lead, chromium, and nickel by bacteria from three different genera isolated from industrial effluent. International Microbiology 23(2): 253–261. https://doi.org/10.1007/s10123-019-00098-w

Babu A G, Kim J D and Oh B T. (2013). Enhancement of heavy metal phytoremediation by Alnus firma with endophytic Bacillus thuringiensis GDB-1. Journal of Hazardous Materials 250–251: 477–483. https://doi.org/10.1016/j.jhazmat.2013.02.014

Banakar R, Alvarez Fernández Á, Abadía J, Capell T and Christou P. (2017). The expression of heterologous Fe (III) phytosiderophore transporter HvYS1 in rice increases Fe uptake, translocation and seed loading and excludes heavy metals by selective Fe transport. Plant Biotechnology Journal 15(4): 423–432. https://doi.org/10.1111/pbi.12637

Bhowmik A, Kukal S S, Saha D, Sharma H, Kalia A and Sharma S. (2019). Potential indicators of soil health degradation in different land use-based ecosystems in the shiwaliks of northwestern India. Sustainability (Switzerland) 11(14): 3908. https://doi.org/10.3390/su11143908

Bosu S, Rajamohan N and Rajasimman M. (2022). Enhanced remediation of lead (II) and cadmium (II) ions from aqueous media using porous magnetic nanocomposites: A comprehensive review on applications and mechanism. Environmental Research 213: 113720. https://doi.org/10.1016/j.envres.2022.113720248

Carlos M H J, Stefani P V Y, Janette A M, Melani M S S and Gabriela P O. (2016). Assessing the effects of heavy metals in ACC deaminase and IAA production on plant growth-promoting bacteria. Microbiological Research 188–189: 53–61. https://doi.org/10.1016/j.micres.2016.05.001

Chen L, Luo S, Li X, Wan Y, Chen J and Liu C. (2014). Interaction of Cd-hyperaccumulator Solanum nigrum L. and functional endophyte Pseudomonas sp. Lk9 on soil heavy metals uptake. Soil Biology and Biochemistry 68: 300–308. https://doi.org/10.1016/j.soilbio.2013.10.021

Cheng C, Han H, Wang Y, He L and Sheng X. (2020). Metal-immobilizing and urease-producing bacteria increase the biomass and reduce metal accumulation in potato tubers under field conditions. Ecotoxicology and Environmental Safety 203: 111017. https://doi.org/10.1016/j.ecoenv.2020.111017

Cho-Ruk K, Kurukote J, Supprung P and Vetayasuporn S. (2006). Perennial plants in the phytoremediation of lead-contaminated soils. Biotechnology 5: 1–4. https://doi.org/10.3923/biotech.2006.1.4

Collin S, Baskar A, Geevarghese D M, Ali M N V S, Bahubali P, Choudhary R, Lvov V, Tovar G I, Senatov F, Koppala S and Swamiappan S. (2022). Bioaccumulation of lead (Pb) and its effects in plants: A review. Journal of Hazardous Materials Letters 3: 100064. https://doi.org/10.1016/j.hazl.2022.100064

Conte A, Chiaberge S, Pedron F, Barbafieri M, Petruzzelli G, Vocciante M, Franchi E and Pietrini I. (2021). Dealing with complex contamination: A novel approach with a combined bio-phytoremediation strategy and effective analytical techniques. Journal of Environmental Management 288(February): 112381. https://doi.org/10.1016/j.jenvman.2021.112381

Dadrasnia A and Pariatamby A. (2016). Phyto-enhanced remediation of soil co-contaminated with lead and diesel fuel using biowaste and Dracaena reflexa: A laboratory study. Waste Management and Research 34(3): 246–253. https://doi.org/10.1177/0734242X15621375

De Guzman M L C, Arcega K S G, Cabigao J N R, and Su G L S. (2016). Isolation and identification of heavy metal-tolerant bacteria from an industrial site as a possible source for bioremediation of Cadmium, Lead and Nickel. Advances in Environmental Biology 10(1): 10–15.

Devika L, Rajaram R and Mathivanan K. (2013). Multiple heavy metal and antibiotic tolerance bacteria isolated from Equatorial Indian Ocean. International Journal of Microbiological Research 4: 212–218.

El-Meihy R M, Abou-Aly H E, Youssef A M, Tewfike T A and E l-Alkshar E A . (2019). Efficiency of heavy metals-tolerant plant growth promoting bacteria for alleviating heavy metals toxicity on sorghum. Environmental and Experimental Botany 162: 295–301. https://doi.org/10.1016/j.envexpbot.2019.03.005

Etesami H and Glick B R. (2024). Bacterial indole-3-acetic acid: A key regulator for plant growth, plant-microbe interactions, and agricultural adaptive resilience. Microbiological Research 281(November 2023): 127602. https://doi.org/10.1016/j.micres.2024.127602

Etesami H, Alikhani H A and Hosseini H M. (2015). Indole-3-acetic acid (IAA) production trait, a useful screening to select endophytic and rhizosphere competent bacteria for rice growth promoting agents. MethodsX 2: 72–78. https://doi.org/10.1016/j.mex.2015.02.008249

Etesami H. (2018). Bacterial mediated alleviation of heavy metal stress and decreased accumulation of metals in plant tissues: Mechanisms and future prospects. Ecotoxicology and Environmental Safety 147: 175–191. https://doi.org/10.1016/j.ecoenv.2017.08.032

Fathia L A N, Baskara M and Sitawati (2015). Analisis kemampuan tanaman semak di median jalan dalam menyerap logam berat Pb [Capability analysis of shrub plant to absorb Pb in median roadside]. Jurnal Produksi Tanaman 3(7): 528–534.

Genchi G, Sinicropi M S, Lauria G, Carocci A and Catalano A. (2020). The effects of cadmium toxicity. International Journal of Environmental Research and Public Health 17(11): 3782. https://doi.org/10.3390/ijerph17113782

González Henao S and Ghneim-Herrera T. (2021). Heavy metals in soils and the remediation potential of bacteria associated with the plant microbiome. Frontiers in Environmental Science 9: 604216. https://doi.org/10.3389/fenvs.2021.604216

Guo J K, Muhammad H, Lv X, Wei T, Ren X H, Jia H L, Atif S and Hua L. (2020). Prospects and applications of plant growth promoting rhizobacteria to mitigate soil metal contamination: A review. Chemosphere 246: 125823. https://doi.org/10.1016/j.chemosphere.2020.125823

Herlina L, Purnaweni H, Sudarno S, Widianarko and Sunoko H R. (2020). Phytoremediation of lead-contaminated soil by ornament plant Codiaeum variegatum. Journal of Physics: Conference Series 1567(3): 032043. https://doi.org/10.1088/1742-6596/1567/3/032043

Hossain S A, Mazrin M and Habib M H. (2023). Determination of organic carbon of soil by the Walkley & Black method. Method. https://doi.org/10.13140/RG.2.2.32699.80162/1

Huang F, Wang Z H, Cai Y X, Chen, S. H., Tian, J. H., & Cai, K. Z. (2018). Heavy metal bioaccumulation and cation release by growing Bacillus cereus RC-1 under culture conditions. Ecotoxicology and Environmental Safety 157: 216–226. https://doi.org/10.1016/j.ecoenv.2018.03.077

Jasim B, Jimtha John C, Shimil V, Jyothis M and Radhakrishnan E K. (2014). Studies on the factors modulating indole-3-acetic acid production in endophytic bacterial isolates from Piper nigrum and molecular analysis of ipdc gene. Journal of Applied Microbiology 117(3): 786–799. https://doi.org/10.1111/jam.12569

Jin Y, Luan Y, Ning Y and Wang L. (2018). Effects and mechanisms of microbial remediation of heavy metals in soil: A critical review. Applied Sciences (Switzerland) 8(8): 1336. https://doi.org/10.3390/app8081336

Jing Y d, He Z l and Yang X e. (2007). Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils. Journal of Zhejiang University Science B 8(3): 192–207. https://doi.org/10.1631/jzus.2007.B0192

Kurnia K, Sadi N H and Jumianto S. (2015). Isolation and characterization of Pb resistant bacteria from Cilalay Lake, Indonesia. Aceh International Journal of Science and Technology 4(3): 83–87. https://doi.org/10.13170/aijst.4.3.3016

Ma Y, Oliveira R S, Nai F, Rajkumar M, Luo Y, Rocha I and Freitas H. (2015). The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil. Journal of Environmental Management 156: 62–69. https://doi.org/10.1016/j.jenvman.2015.03.024

Ma Y, Rajkumar M, Luo Y M and Freitas H. (2011). Inoculation of endophytic bacteria on host and non-host plants: Effects on plant growth and Ni uptake. Journal of Hazardous Materials 195: 230–237. https://doi.org/10.1016/j.jhazmat.2011.08.034250

Ma Y, Rajkumar M, Zhang C and Freitas H. (2016). Beneficial role of bacterial endophytes in heavy metal phytoremediation. Journal of Environmental Management 174: 14–25. https://doi.org/10.1016/j.jenvman.2016.02.047

Marzan L W, Hossain M, Mina S A, Akter Y and Chowdhury A M M A. (2017). Isolation and biochemical characterization of heavy-metal resistant bacteria from tannery effluent in Chittagong city, Bangladesh: Bioremediation viewpoint. Egyptian Journal of Aquatic Research 43(1): 65–74. https://doi.org/10.1016/j.ejar.2016.11.002

Mello I S, Targanski S, Pietro-Souza W, Frutuoso Stachack F F, Terezo A J and Soares M. A. (2020). Endophytic bacteria stimulate mercury phytoremediation by modulating its bioaccumulation and volatilization. Ecotoxicology and Environmental Safety 202: 110818. https://doi.org/10.1016/j.ecoenv.2020.110818

Mishra J, Singh R and Arora N K. (2017). Alleviation of heavy metal stress in plants and remediation of soil by rhizosphere microorganisms. Frontiers in Microbiology 8: 1706. https://doi.org/10.3389/fmicb.2017.01706

Passera A, Rossato M, Oliver J S, Battelli G, Shahzad G I R, Cosentino E, Sage J M, Toffolatti S L, Lopatriello G, Davis J R, Kaiser M D, Delledonne M and Casati P. (2021). Characterization of Lysinibacillus fusiformis strain S4C11: In vitro, in planta, and in silico analyses reveal a plant-beneficial microbe. Microbiological Research 244: 126665. https://doi.org/10.1016/j.micres.2020.126665

Perveen N, Hanif M A, Noureen S, Ansari T M and Bhatti H N. (2011). Phytoremediation of Pb(II) by Jasminum sambac. Journal of the Chemical Society of Pakistan 33(4): 592–597.

Rohmah N S, Suharjono, Jatmiko Y D, Siswanto D and Mustafa I. (2020). The potency of endophytic bacteria isolated from ficus septica as phytoremediation promoting agent of Cr (VI) contaminated soil. Biodiversitas 21(5): 1920–1927. https://doi.org/10.13057/biodiv/d210519

Saitou N and Nei M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4(4): 406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454

Seneviratne M, Gunaratne S, Bandara T, Weerasundara L, Rajakaruna N, Seneviratne G and Vithanage M. (2016). Plant growth promotion by Bradyrhizobium japonicum under heavy metal stress. South African Journal of Botany 105: 19–24. https://doi.org/10.1016/j.sajb.2016.02.206

Shaaban Emara N, Elwakil B H, Zakaria M and Olama Z A. (2023). Mechanistic action of lead removal by the native isolate Bacillus amyloliquefaciens ON261680.1. Arabian Journal of Chemistry 16(8): 104962. https://doi.org/10.1016/j.arabjc.2023.104962

Shao W, Li M, Teng Z, Qiu B, Huo Y and Zhang K. (2019). Effects of Pb(II) and Cr(VI) stress on phosphate-solubilizing bacteria (Bacillus sp. strain MRP-3): Oxidative stress and bioaccumulation potential. International Journal of Environmental Research and Public Health 16(12): 2172. https://doi.org/10.3390/ijerph16122172

Shaw D R and Dussan J. (2018). Transcriptional analysis and molecular dynamics simulations reveal the mechanism of toxic metals removal and efflux pumps in Lysinibacillus sphaericus OT4b.31. International Biodeterioration and Biodegradation 127: 46– 61. https://doi.org/10.1016/j.ibiod.2017.11.016

Sulistyantini C and Utami U. (2021). The effect of addition Mn2+ metal ions and incubation time to Bacillus cereus cellulase enzyme activity from endophytic bacteria of Curcuma rhizome (Curcuma zanthorrizha Roxb.). El-Hayah 8(2): 62–69. https://doi.org/10.18860/elha.v8i2.12463251

Tamura K, Stecher G and Kumar S. (2021). MEGA11: Molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution 38(7): 3022–3027. https://doi.org/10.1093/molbev/msab120

Tangahu B V, Sheikh Abdullah S R, Basri H, Idris M, Anuar N and Mukhlisin M. (2011). A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. International Journal of Chemical Engineering 2011: 939161. https://doi.org/10.1155/2011/939161

Tauqeer M H, Ali S, Rizwan M, Ali Q, Saeed R, Iftikhar U, Ahmad R, Farid M and Abbasi G H. (2016). Phytoremediation of heavy metals by Alternanthera bettzickiana: Growth and physiological response. Ecotoxicology and Environmental Safety 126: 138–146. https://doi.org/10.1016/j.ecoenv.2015.12.031

Tirry N, Tahri Joutey N, Sayel H, Kouchou A, Bahafid W, Asri M and El Ghachtouli N. (2018). Screening of plant growth promoting traits in heavy metals resistant bacteria: Prospects in phytoremediation. Journal of Genetic Engineering and Biotechnology 16(2): 613–619. https://doi.org/10.1016/j.jgeb.2018.06.004

Trivedi P, He Z, Van Nostrand J D, Albrigo G, Zhou J and Wang ,N. (2012). Huanglongbing alters the structure and functional diversity of microbial communities associated with citrus rhizosphere. ISME Journal 6(2): 363–383. https://doi.org/10.1038/ismej.2011.100

Uddin M M, Zakeel M C M, Zavahir J S, Marikar F M M T and Jahan I. (2021). Heavy metal accumulation in rice and aquatic plants used as human food: A general review. Toxics 9(2): 360. https://doi.org/10.3390/toxics9120360

Vieira F C S and Nahas E. (2005). Comparison of microbial numbers in soils by using various culture media and temperatures. Microbiological Research 160(2): 197–202. https://doi.org/10.1016/j.micres.2005.01.004

Violante A, Cozzolino V, Perelomov L, Caporale A and Pigna M. (2010). Mobility and biovailability of heavy metal and metalloids in the soil environments. Journal of Soil Science and Plant Nutrition 10(3): 268–292. https://doi.org/10.4067/S0718-95162010000100005

Wahab A, Abdi G, Saleem M H, Ali B, Ullah S, Shah W, Mumtaz S, Yasin G, Muresan C C and Marc R A. (2022). Plants’ physio-biochemical and phyto-hormonal responses to alleviate the adverse effects of drought stress: A comprehensive review. Plants 11(13): 1620. https://doi.org/10.3390/plants11131620

Wang J, Li Q, Li M M, Chen T H, Zhou Y F and Yue Z B. (2014). Competitive adsorption of heavy metal by extracellular polymeric substances (EPS) extracted from sulfate reducing bacteria. Bioresource Technology 163: 374–376. https://doi.org/10.1016/j.biortech.2014.04.073

Wang L, Fan D, Chen W and Terentjev E M. (2015). Bacterial growth, detachment and cell size control on polyethylene terephthalate surfaces. Scientific Reports 5: 15159. https://doi.org/10.1038/srep15159

Wang X H, Luo W W, Wang Q, He L Y and Sheng X F. (2018). Metal(loid)-resistant bacteria reduce wheat Cd and As uptake in metal(loid)-contaminated soil. Environmental Pollution 241: 529–539. https://doi.org/10.1016/j.envpol.2018.05.088

Yahaghi Z, Shirvani M, Nourbakhsh F, de la Peña T C, Pueyo J J and Talebi M. (2018). Isolation and characterization of Pb-solubilizing bacteria and their effects on Pb uptake by Brassica juncea: Implications for microbe-assisted phytoremediation. Journal of Microbiology and Biotechnology 28(7): 1156–1167. https://doi.org/10.4014/jmb.1712.12038252

Zhang H, Gao Z, Shi M and Fang S. (2020). Soil bacterial diversity and its relationship with soil co2 and mineral composition: A case study of the laiwu experimental site. International Journal of Environmental Research and Public Health 17(16): 1–20. https://doi.org/10.3390/ijerph17165699

Zhang K, Xue Y, Zhang J and Hu X. (2020). Removal of lead from acidic wastewater by bio-mineralized bacteria with pH self-regulation. Chemosphere 241: 125041. https://doi.org/10.1016/j.chemosphere.2019.125041

Zhang K, Zhang D, Wu X and Xue Y. (2021). Continuous and efficient immobilization of heavy metals by phosphate-mineralized bacterial consortium. Journal of Hazardous Materials 416: 125800. https://doi.org/10.1016/j.jhazmat.2021.125800