Impact of Endophytic and Rhizospheric Fungi on The Growth and Specialised Metabolite Production of Phyllanthus niruri L.

Main Article Content

Winda Nawfetrias
Yuda Purwana Roswanjaya
Nur Alfi Saryanah
Sulastri Sulastri
Lukita Devy
Rizkita Rachmi Esyanti
Ahmad Faizal

Abstract

Medicinal plants are rich sources of specialised metabolites, crucial for various fields like agriculture, forestry, food processing, biofuels and environmental remediation. Microbes, particularly endophytic and rhizospheric fungi, play a significant role in optimising the production and regulation of these compounds. Several research showed these fungi in various plants, but they have not been thoroughly studied in Phyllanthus niruri, especially to promote growth and elicit lignan compounds like phyllanthin in P. niruri. A total of 131 fungi, consist of 57 rhizospheric fungi and 74 endophytic fungi, were successfully isolated from P. niruri in six different lowland areas in West Java. The potency assay results indicated that 106 fungi could produce indole-3-acetic acid (IAA). Six fungi could synthesise cellulase, and one fungus had the capability to solubilise phosphate. Our results showed that Fusarium sp., Colletotrichum gloeosporioides, Colletotrichum tenuissimum, Colletotrichum fructicola, Pseudallescheria boydii, Aspergillus aculeatus, Myrothecium inundatum, Colletotrichum truncatum can synthesise IAA. Fusarium sp. and Myrothecium inundatum could synthesise cellulase and only Aspergillus aculeatus have activity as phosphate solubilisation.
Cocultivation of P. niruri and eight endophytic and rhizospheric fungi showed that Fusarium sp., C. gloeosporioides, P. boydii, A. aculeatus and M. inundatum had the potential traits to increase biomass, phyllanthin levels and phyllanthin yield. In general, these fungi have the potency to be elicitors to enhance phyllanthin in P. niruri.

Article Details

How to Cite
Winda Nawfetrias, Yuda Purwana Roswanjaya, Nur Alfi Saryanah, Sulastri Sulastri, Lukita Devy, Rizkita Rachmi Esyanti, & Ahmad Faizal. (2025). Impact of Endophytic and Rhizospheric Fungi on The Growth and Specialised Metabolite Production of Phyllanthus niruri L. Tropical Life Sciences Research, 36(2), 267-295. https://doi.org/10.21315/tlsr2025.36.2.13
Section
Original Article

References

Ahmed El-Khawaga M, Abd El-Aziz M M and Abd El-Moneim Hegazi G. (2013). Identification and bioactive potential of endophytic fungi isolated from. Life Science Journal 10(2)(June): 2804–2814.

Al-Harthi H F, Elgorgan A M, Ahmed B, Bahkali A H, ElSheshtawi M, Purusottapatnam Shaik J, Msaad Al-Falih A and Syed A. (2023). Identification, molecular characterization, and plant growth promoting activities of endophytic fungi of Jasminum sambac, Camellia sinensis, and Ocimum basilicum. Journal of King Saud University – Science 35(3): 102558. https://doi.org/10.1016/j.jksus.2023.102558290

Al Zarzour R H, Ahmad M, Asmawi M Z, Kaur G, Ali M, Saeed A, Al-mansoub M A, Ayesh S, Saghir M, Usman N S and Al-dulaimi D W. (2017). Phyllanthus niruri standardized extract alleviates the progression of non-alcoholic fatty liver disease and decreases atherosclerotic risk in. Nutrients 9(766): 1–19. https://doi.org/10.3390/nu9070766

Araújo K S, Brito V N, Veloso T G R, de Leite T S, Alves J L, da Hora Junior B T, Moreno H L A, Pereira O L, Mizubuti E S G and de Queiroz M V. (2020). Diversity and distribution of endophytic fungi in different tissues of Hevea brasiliensis native to the Brazilian Amazon forest. Mycological Progress 19(10): 1057–1068. https://doi.org/10.1007/s11557-020-01613-4

Banerjee A and Chattopadhyay S. (2010). Effect of overexpression of Limum usitatissimum PINORRESINOL LARICIRESINOL REDUCTASE (LuPLR) gene in transgenic Phyllanthus amarus. Plant Cell, Tissue and Organ Culture 103(3): 315–329. https://doi.org/10.1007/s11240-010-9781-x

Bhatia N, Gupta T, Sharma B and Sarethy I P. (2019). Endophytes from Phyllanthus niruri: Selection, characterization and metabolite production. Journal of Materials Science & Surface Engineering 6(6): 888–894.

Bilal L, Asaf S, Hamayun M, Gul H, Iqbal A, Ullah I, Lee I J and Hussain A. (2018). Plant growth promoting endophytic fungi Aspergillus fumigatus TS1 and Fusarium proliferatum BRL1 produce gibberellins and regulates plant endogenous hormones. Symbiosis 76(2): 117–127. https://doi.org/10.1007/s13199-018-0545-4

Blodgett J T, Swart W J, Louw S vd M and Weeks W J. (2007). Soil amendments and watering influence the incidence of endophytic fungi in Amaranthus hybridus in South Africa. Applied Soil Ecology 35(2): 311–318. https://doi.org/10.1016/j.apsoil.2006.07.010

Caruso G, Abdelhamid M T, Kalisz A and Sekara A. (2020). Linking endophytic fungi to medicinal plants therapeutic activity: A case study on Asteraceae. Agriculture 10(7): 286. https://doi.org/10.3390/agriculture10070286

Chagas F O, Pessotti R D C, Caraballo-Rodríguez A M and Pupo M T. (2018). Chemical signaling involved in plant-microbe interactions. Chemical Society Reviews 47(5): 1652–1704. https://doi.org/10.1039/c7cs00343a

Chen J, Huang X, Tong B, Wang D, Liu J, Liao X and Sun Q. (2021). Effects of rhizosphere fungi on the chemical composition of fruits of the medicinal plant Cinnamomum migao endemic to southwestern China. BMC Microbiology 21(1): 1–14. https://doi.org/10.1186/s12866-021-02216-z

Chung K R, Shilts T, Ertürk Ü, Timmer L W and Ueng P P. (2003). Indole derivatives produced by the fungus Colletotrichum acutatum causing lime anthracnose and postbloom fruit drop of citrus. FEMS Microbiology Letters 226(1): 23–30. https://doi.org/10.1016/S0378-1097(03)00605-0

Compant S, Clément C and Sessitsch A. (2010). Plant growth-promoting bacteria in the rhizo- and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization. Soil Biology and Biochemistry 42(5): 669–678. https://doi.org/10.1016/j.soilbio.2009.11.024

Contreras-Cornejo H A, Macías-Rodríguez L, Cortés-Penagos C and López-Bucio J. (2009). Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in arabidopsis. Plant Physiology 149(3): 1579–1592. https://doi.org/10.1104/pp.108.130369291

Corbin C, Decourtil C, Marosevic D, Bailly M, Lopez T, Renouard S, Doussot J, Dutilleul C, Auguin D, Giglioli-Guivarc’h N, Lainé E, Lamblin F and Hano C. (2013). Role of protein farnesylation events in the ABA-mediated regulation of the pinoresinol-lariciresinol reductase 1 (LuPLR1) gene expression and lignan biosynthesis in flax (Linum usitatissimum L.). Plant Physiology and Biochemistry 72: 96–111. https://doi.org/10.1016/j.plaphy.2013.06.001

Dong L, Ma Y, Chen C -Y, Shen L, Sun W, Cui G, Naqvi N I and Deng Y Z. (2022). Identification and characterization of auxin/IAA biosynthesis pathway in the rice blast fungus Magnaporthe oryzae. Journal of Fungi (Basel) 8(2): 208. https://doi.org/10.3390/jof8020208

Eschen R, Hunt S, Mykura C, Gange A C and Sutton B C. (2010). The foliar endophytic fungal community composition in Cirsium arvense is affected by mycorrhizal colonization and soil nutrient content. Fungal Biology 114(11–12): 991–998. https://doi.org/10.1016/j.funbio.2010.09.009

Fu S F, Wei J Y, Chen H W, Liu Y Y, Lu H Y and Chou J Y. (2015). Indole-3-acetic acid: A widespread physiological code in interactions of fungi with other organisms. Plant Signaling and Behavior 10(8): e1048052. https://doi.org/10.1080/15592324.2015.1048052

Gang D R, Kasahara H, Xia Z Q, Mijnsbrugge K V, Bauw G, Boerjan W, Van Montagu M, Davin L B and Lewis N G. (1999). Evolution of plant defense mechanisms: Relationships of phenylcoumaran benzylic ether reductases to pinoresinol-lariciresinol and isoflavone reductases. Journal of Biological Chemistry 274(11): 7516–7527. https://doi.org/10.1074/jbc.274.11.7516

Gupta P, Samant K and Sahu A. (2012). Isolation of cellulose-degrading bacteria and determination of their cellulolytic potential. International Journal of Microbiology 2012: 578925. https://doi.org/10.1155/2012/578925

Hadi I. (2021). In-silico molecular docking study : Potensi senyawa phlyantusiin c sebagai alternatif pengobatan infeksi Covid 19. FarmasiMu 1(1): 32–39.

Hannana S, Afroz F, Begum M, Sharmin S, Moni F, Akhter S, Sarker A, Rony S and Sohrab M. (2020). Bioactive potential of endophytic fungi isolated from Phyllanthus niruri L. Bangladesh Journal of Scientific and Industrial Research 55(4): 311–318. https://doi.org/10.3329/bjsir.v55i4.50964

Harris R W. (1992). Root-shoot ratios. Journal of Arboriculture 18(1): 39–42. https://doi.org/10.48044/jauf.1992.009

Huang X, Chaparro J M, Reardon K F, Zhang R, Shen Q and Vivanco J M. (2014). Rhizosphere interactions: Root exudates, microbes, and microbial communities. Botany 92: 267–275. https://doi.org/10.1139/cjb-2013-0225

Inchoo M, Chirdchupunseree H, Pramyothin P and Jianmongkol S. (2011). Endothelium-independent effects of phyllanthin and hypophyllanthin on vascular tension. Fitoterapia 82(8): 1231–1236. https://doi.org/10.1016/j.fitote.2011.08.013

Jasim B, John Jimtha C, Jyothis M and Radhakrishnan E K. (2013). Plant growth promoting potential of endophytic bacteria isolated from Piper nigrum. Plant Growth Regulation 71(1): 1–11. https://doi.org/10.1007/s10725-013-9802-y

Joe M M, Devaraj S, Benson A and Sa T. (2016). Isolation of phosphate solubilizing endophytic bacteria from Phyllanthus amarus Schum & Thonn: Evaluation of plant growth promotion and antioxidant activity under salt stress. Journal of Applied Research on Medicinal and Aromatic Plants 3(2): 71–77. https://doi.org/10.1016/j.jarmap.2016.02.003292

Junaidi A R and Bolhassan M H. (2017). Screening of indole-3-acetic acid (IAA) productions by endophytic Fusarium oxysporum isolated from Phyllanthus niruri. Borneo Journal of Resource Science and Technology 7(1): 56–59. https://doi.org/10.33736/bjrst.393.2017

Kalimuthu A K, Parasuraman P, Sivakumar P, Murugesan S, Arunachalam S, Pandian S R K, Ravishankar V, Ammunje D N, Sampath M, Panneerselvam T and Kunjiappan S. (2022). In silico, in vitro screening of antioxidant and anticancer potentials of bioactive secondary metabolites from an endophytic fungus (Curvularia sp.) from Phyllanthus niruri L. Environmental Science and Pollution Research 29(32): 48908–48925. https://doi.org/10.1007/s11356-022-19249-0

Kandasamy P, Manogaran S, Dhakshinamoorthy M and Kannan K P. (2015). Evaluation of antioxidant and antibacterial activities of endophytic fungi isolated from Bauhinia racemosa Lam and Phyllanthus amarus Schum and Thonn Endophytic fungi from Mimusops elengi. Journal of Chemical and Pharmaceutical Research 7(9): 366– 379.

Kandavel D and Sekar S. (2015). Endophytic fungi from Phyllanthus amarus schum. & Thonn. capable of producing phyllanthin, hypophyllanthin and/or related compounds. International Journal of Pharmacy and Pharmaceutical Sciences 7(5): 253–257.

Khalil A M A, Hassan S E D, Alsharif S M, Eid A M, Ewais E E D, Azab E, Gobouri A A, Elkelish A and Fouda A. (2021). Isolation and characterization of fungal endophytes isolated from medicinal plant Ephedra pachyclada as plant growth-promoting. Biomolecules 11(2): 1–18. https://doi.org/10.3390/biom11020140

Khan A L, Al-Harrasi A, Al-Rawahi A, Al-Farsi Z, Al-Mamari A, Waqas M, Asaf S, Elyassi A, Mabood F, Shin J H and Lee I J. (2016). Endophytic fungi from frankincense tree improves host growth and produces extracellular enzymes and indole acetic acid. PLoS ONE 11(6): 1–19. https://doi.org/10.1371/journal.pone.0158207

Kravchenko L V, Azarova T S, Makarova N M and Tikhonovich I A. (2004). The effect of tryptophan present in plant root exudates on the phytostimulating activity of rhizobacteria. Microbiology 73(2): 156–158. https://doi.org/10.1023/B:MICI.0000023982.76684.9d

Kulkarni G B, Sanjeevkumar S, Kirankumar B, Santoshkumar M and Karegoudar T B. (2013). Indole-3-acetic acid biosynthesis in Fusarium delphinoides strain GPK, a causal agent of wilt in chickpea. Applied Biochemistry and Biotechnology 169(4): 1292–1305. https://doi.org/10.1007/s12010-012-0037-6

Kusari S, Lamshoft M and Spiteller M. (2009). Aspergillus fumigatus Fresenius, an endophytic fungus from Juniperus communis L. Horstmann as a novel source of the anticancer pro-drug deoxypodophyllotoxin. Journal of Applied Microbiology 107: 1019–1030. https://doi.org/10.1111/j.1365-2672.2009.04285.x

Lin L and Xu X. (2013). Indole-3-acetic acid production by endophytic Streptomyces sp. En-1 isolated from medicinal plants. Current Microbiology 67(2): 123–132. https://doi.org/10.1007/s00284-013-0348-z

Loh F C W, Grabosky J C and Bassuk N L. (2002). Using the SPAD 502 meter to assess chlorophyll and nitrogen content of benjamin fig and cottonwood leaves. HortTechnology 12(4): 682–686. https://doi.org/10.21273/horttech.12.4.682

Lu D, Jin H, Yang X, Zhang D, Yan Z, Li X, Zhao Y, Han R and Qin B. (2016). Characterization of rhizosphere and endophytic fungal communities from roots of Stipa purpurea in alpine steppe around Qinghai Lake. Canadian Journal of Microbiology 62(8): 643–656. https://doi.org/10.1139/cjm-2015-0857293

Ludwig-Müller J. (2015). Bacteria and fungi controlling plant growth by manipulating auxin: Balance between development and defense. Journal of Plant Physiology 172: 4–12. https://doi.org/10.1016/j.jplph.2014.01.002

Marhaeny H D, Widyawaruyanti A, Widiandani T, Fuad Hafid A and Wahyuni T S. (2021). Phyllanthin and hypophyllanthin, the isolated compounds of Phyllanthus niruri inhibit protein receptor of corona virus (COVID-19) through in silico approach. Journal of Basic and Clinical Physiology and Pharmacology 32(4): 809–815. https://doi.org/10.1515/jbcpp-2020-0473

Markulin L, Corbin C, Renouard S, Drouet S, Gutierrez L, Mateljak I, Auguin D, Hano C, Fuss E and Lainé E. (2019). Pinoresinol–lariciresinol reductases, key to the lignan synthesis in plants. Planta 249(6): 1695–1714. https://doi.org/10.1007/s00425-019-03137-y

Mazumdar A and Chattopadhyay S. (2016). Sequencing, de novo assembly, functional annotation and analysis of Phyllanthus amarus leaf transcriptome using the illumina platform. Frontiers in Plant Science 6: 1–22. https://doi.org/10.3389/fpls.2015.01199

Miao C, Mi Q, Qiao X, Zheng Y, Chen Y, Xu L, Guan H and Zhao L. (2016). Rhizospheric fungi of Panax notoginseng: Diversity and antagonism to host phytopathogens. Journal of Ginseng Research 40(2): 127–134. https://doi.org/10.1016/j.jgr.2015.06.004

Moy M, Li H M, Sullivan R, White Jr J F and Belanger F C. (2002). Endophytic fungal ϐ-1, 6-glucanase expression in the infected host grass 1. Plant Physiology 130(November): 1298–1308. https://doi.org/10.1104/pp.010108

Murugaiyah V and Chan K L. (2007). Determination of four lignans in Phyllanthus niruri L. by a simple high-performance liquid chromatography method with fluorescence detection. Journal of Chromatography 1154(1–2): 198–204. https://doi.org/10.1016/j.chroma.2007.03.079

Murugesan S, Kottekad S, Crasta I, Sreevathsan S, Usharani D, Perumal M K and Mudliar S N. (2021). Targeting COVID-19 (SARS-CoV-2) main protease through active phytocompounds of ayurvedic medicinal plants – Emblica officinalis (Amla), Phyllanthus niruri Linn. (Bhumi Amla) and Tinospora cordifolia (Giloy) – A molecular docking and simulation study. Computers in Biology and Medicine 136(January): 104683. https://doi.org/10.1016/j.compbiomed.2021.104683

Nawfetrias W, Devy L, Esyanti R R and Faizal, A. (2024). Phyllanthus lignans: A review of biological activity and elicitation. Horticulturae 10(195): 1–20. https://doi.org/10.3390/horticulturae10020195

Noorjahan A, Aiyamperumal B and Anantharaman P. (2019). Isolation and charecterisation of seaweed endophytic fungi as an efficient phosphate solubizers. Biosciences, Biotechnology Research Asia 16(1): 33–39. https://doi.org/10.13005/bbra/2718

Photita W, Lumyong S, Lumyong P, McKenzie E H C and Hyde K D. (2004). Are some endophytes of Musa acuminata latent pathogens? Fungal Diversity 16: 131–140.

Pili N N, França S C, Kyndt T, Makumba B A, Skilton R, Höfte M, Mibey R K and Gheysen G. (2016). Analysis of fungal endophytes associated with rice roots from irrigated and upland ecosystems in Kenya. Plant and Soil 405(1–2): 371–380. https://doi.org/10.1007/s11104-015-2590-6

Raaijmakers J M, Paulitz T C, Steinberg C, Alabouvette C and Moënne-Loccoz Y. (2009). The rhizosphere: A playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321: 341–361. https://doi.org/10.1007/s11104-008-9568-6294

Ranathunge N P, Bajjamage H and Sandani P. (2016). Deceptive behaviour of Colletotrichum truncatum: Strategic survival as an asymptomatic endophyte on non-host species. Journal of Plant Protection Research 56(2): 157–162. https://doi.org/10.1515/jppr-2016-0026

Rathinavel T, Thangaswamy S, Ammashi S and Kumarasamy S. (2020). Virtual screening of COVID-19 drug from three indian traditional medicinal plants through in silico approach. Research Journal of Biotechnology 15(10): 124–140.

Robinson R J, Fraaije B A, Clark I M, Jackson R W, Hirsch P R and Mauchline T H. (2016). Endophytic bacterial community composition in wheat (Triticum aestivum) is determined by plant tissue type, developmental stage and soil nutrient availability. Plant and Soil 405(1–2): 381–396. https://doi.org/10.1007/s11104-015-2495-4

Saharan B S and Nehra V. (2011). Plant growth promoting rhizobacteria: A critical review. Life Sciences and Medicine Research 2011: 1–30.

Sanchez-Azofeifa A, Oki Y, Fernandes G W, Ball R A and Gamon J. (2012). Relationships between endophyte diversity and leaf optical properties. Trees – Structure and Function 26(2): 291–299. https://doi.org/10.1007/s00468-011-0591-5

Sharma G, Agarwal S, Verma K, Bhardwaj R and Mathur V. (2023). Therapeutic compounds from medicinal plant endophytes: Molecular and metabolic adaptations. Journal of Applied Microbiology 134(4): 1–14. https://doi.org/10.1093/jambio/lxad074

Shymanovich T and Faeth S H. (2019). Environmental factors affect the distribution of two Epichloë fungal endophyte species inhabiting a common host grove bluegrass (Poa alsodes). Ecology and Evolution 9(11): 6624–6642. https://doi.org/10.1002/ece3.5241

Spaepen S and Vanderleyden J. (2011). Auxin and plant-microbe interactions. Cold Spring Harbor Perspectives in Biology 2011(3): a001438. https://doi.org/10.1101/cshperspect.a001438

Strakowska J, Błaszczyk L and Chełkowski J. (2014). The significance of cellulolytic enzymes produced by Trichoderma in opportunistic lifestyle of this fungus. Journal of Basic Microbiology 54(Suppl. 1): 1–12. https://doi.org/10.1002/jobm.201300821

Taghinasab M and Jabaji S. (2020). Cannabis microbiome and the role of endophytes in modulating the production of secondary metabolites: An overview. Microorganisms 8(3): 1–16. https://doi.org/10.3390/microorganisms8030355

Tashackori H, Sharifi M, Chashmi N A, Behmanesh M and Safaie N. (2018). Piriformospora indica cell wall modulates gene expression and metabolite profile in Linum album hairy roots. Planta 248(5): 1289–1306. https://doi.org/10.1007/s00425-018-2973-z

Thakur I, Nehru J, Hospital C and Bigoniya P. (2014). Radioprotective and free radicals scavenging activity of phyllanthin: Isolated from Phyllanthus. International Journal of Pharmacy and Biological Sciences 4(3): 1–10.

Tsavkelova E A, Cherdyntseva T A and Netrusov A I. (2005). Auxin production by bacteria associated with orchid roots. Mikrobiologiia 74(1): 55–62. https://doi.org/10.1007/s11021-005-0027-6

Turbat A, Rakk D, Vigneshwari A, Kocsubé S, Thu H, Szepesi Á, Bakacsy L, Škrbić B D, Jigjiddorj E A, Vágvölgyi C and Szekeres A. (2020). Characterization of the plant growth-promoting activities of endophytic fungi isolated from sophora flavescens. Microorganisms 8(5): 1–15. https://doi.org/10.3390/microorganisms8050683

Umezawa T. (2003). Diversity in lignan biosynthesis. Phytochemistry Reviews 2: 371–390. https://doi.org/10.1023/B:PHYT.0000045487.02836.32295

Walia A, Guleria S, Chauhan A and Mehta P. (2017). Endophytic bacteria: Role in phosphate solubilization. In Maheshwari D and Annapurna K. (eds.), Endophytes: Crop productivity and protection. Cham: Springer, 61–93. https://doi.org/10.1007/978-3-319-66544-3_4

Wang W, Zhai Y, Cao L, Tan H and Zhang R. (2016). Endophytic bacterial and fungal microbiota in sprouts, roots and stems of rice (Oryza sativa L.). Microbiological Research 188–189: 1–8. https://doi.org/10.1016/j.micres.2016.04.009

Wang Y, Dai C C, Cao J L and Xu D S. (2012). Comparison of the effects of fungal endophyte Gilmaniella sp. and its elicitor on Atractylodes lancea plantlets. World Journal of Microbiology and Biotechnology 28(2): 575–584. https://doi.org/10.1007/s11274-011-0850-z

Wha J, Sang K and Shim H. (2019). The fungus Colletotrichum as a source for bioactive secondary metabolites. Archives of Pharmacal Research 42(9): 735–753. https://doi.org/10.1007/s12272-019-01142-z

White T J, Bruns T, Lee S and Taylor J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In Innis M A, Gelfand D H, Sninsky J J and White T J. (eds.), PCR protocols: A guide to methods and applications. Academic Press, 315–322. https://doi.org/10.1016/b978-0-12-372180-8.50042-1

Wu L, Han T, Li W, Jia M, Xue L, Rahman K and Qin L. (2013). Geographic and tissue influences on endophytic fungal communities of Taxus chinensis var. mairei in China. Current Microbiology 66(1): 40–48. https://doi.org/10.1007/s00284-012-0235-z

Xia Q, Rufty T and Shi W. (2020). Soil microbial diversity and composition: Links to soil texture and associated properties. Soil Biology and Biochemistry 149: 107953. https://doi.org/10.1016/j.soilbio.2020.107953

Yang N, Zhang W, Wang D, Cao D, Cao Y, He W, Lin Z, Chen X, Ye G, Chen Z, Chen J and Wei X. (2023). A novel endophytic fungus strain of Cladosporium: Its identification, genomic analysis, and effects on plant growth. Frontiers in Microbiology 14(November): 1–14. https://doi.org/10.3389/fmicb.2023.1287582

Yuan Z C, Haudecoeur E, Faure D, Kerr K F and Nester E W. (2008). Comparative transcriptome analysis of Agrobacterium tumefaciens in response to plant signal salicylic acid, indole-3-acetic acid and γ-amino butyric acid reveals signalling cross-talk and agrobacterium-plant co-evolution. Cellular Microbiology 10(11): 2339–2354. https://doi.org/10.1111/j.1462-5822.2008.01215.x

Zhang Q, Wei X and Wang J. (2012). Fitoterapia phillyrin produced by Colletotrichum gloeosporioides, an endophytic fungus isolated from Forsythia suspensa. Fitoterapia 83(8): 1500–1505. https://doi.org/10.1016/j.fitote.2012.08.017

Zhang Y, Chen F S, Wu X Q, Luan F G, Zhang L P, Fang X M, Wan S Z, Hu X F and Ye J R. (2018). Isolation and characterization of two phosphate-solubilizing fungi from rhizosphere soil of moso bamboo and their functional capacities when exposed to different phosphorus sources and pH environments. PLoS ONE 13(7): 1–14. https://doi.org/10.1371/journal.pone.0199625

Zhu X Q, Zheng H H, Fang Y L and Guo L Y. (2014). A method to induce significant production of conidia from Monilinia fructigena, Monilia polystroma, and Monilia yunnanensis. Australasian Plant Pathology 43(5): 531–533. https://doi.org/10.1007/s13313-014-0307-6

Zohair M M, El-Beih A A, Sadik M W, Hamed E R and Sedik M Z. (2018). Promising biocontrol agents isolated from medicinal plants rhizosphere against root-rot fungi. Biocatalysis and Agricultural Biotechnology 15(April): 11–18. https://doi.org/10.1016/j.bcab.2018.04.015