The Significance of Rhizobacteria for Strawberry Cultivation in Tropical Area: A Review
Main Article Content
Abstract
In tropical regions, high temperatures and low nitrogen (N) and phosphorus (P) in soil limit plant performance and fruit production. The soil-beneficial microbes, including rhizobacteria, have the potential to overcome the nutrient problems in the soil. Rhizobacteria fix the dinitrogen, solubilise the P and potassium (K), and produce hormones and other metabolites to stimulate plant development and resistance against environmental challenges like inadequate soil fertility, heavy metal concentrations or drought. Bacterial genera that occur for promoting growth is Bacillus sp., Azospirillum sp., Azotobacter sp, Pantoea sp. and Pseudomonas sp. Despite the prominent role of rhizobacteria in agriculture and the economic value of strawberries, the potential use of rhizobacteria as a biofertiliser in strawberry cultivation in tropical areas is rarely discussed and reviewed. The information obtained from publications from 2014–2023 by using the keywords of Plant Growth Promoting Rhizobacteria (PGPR), tropics, biofertiliser, N fixation, P and K solubilisation, P mineralisation, phytohormones and strawberry is organised according to the rhizobacteria, mechanisms by which they boost plant growth, and research location in tropical area. This review focuses on evaluating (i) the mechanism of rhizobacteria to increase plant growth, (ii) the role of rhizobacteria on strawberry growth, yield and quality and (iii) the impact of rhizobacteria on biotic and abiotic stress alleviation.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Abd-El-Kareem F, Elshahawy I E and Abd-Elgawad M M M. (2021). Application of Bacillus pumilus isolates for management of black rot disease in strawberry. Egyptian Journal of Biological Pest Control 31(1): 25. https://doi.org/10.1186/s41938-021-00371-z
Abdel-Gaied T G, Abd-El-Khair H, Youssef M M, El-Maaty S A and Mikhail M S. (2022). First report of strawberry bacterial leaf blight caused by Pantoea ananatis in Egypt. Journal of Plant Protection Research 62(2): 207–214. https://doi.org/10.24425/jppr.2022.141359
Achor S, Aravis C, Heaney N, Odion E and Lin C. (2020). Response of organic acid-mobilized heavy metals in soils to biochar application. Geoderma 378: 114628. https://doi.org/10.1016/j.geoderma.2020.114628
Adak N, Gubbuk H and Tetik N. (2018). Yield, quality and biochemical properties of various strawberry cultivars under water stress. Journal of the Science of Food and Agriculture 98(1): 304–311. https://doi.org/10.1002/jsfa.8471
Anuradha, Goyal R K, Sindhu S S and Godara A K. (2019). Effect of PGPR on strawberry cultivation under greenhouse conditions. Indian Journal of Horticulture 76(3): 400–404. https://doi.org/10.5958/0974-0112.2019.00064.1329
Arikan S, Ipek M, Esitken A, Pirlak L, Dönmez M F and Turan M. (2020). Plant growth promoting rhizobacteria mitigate deleterious combined effects of salinity and lime in soil in strawberry plants. Journal of Plant Nutrition 43(13): 2028–2039. https://doi.org/10.1080/01904167.2020.1766073
Arora H, Sharma A, Poczai P, Sharma S, Haron F F, Gafur A and Sayyed R Z. (2022). Plant-Derived protectants in combating soil-borne fungal infections in tomato and chilli. Journal of Fungi 8(2): 213. https://doi.org/10.3390/jof8020213
Ashraf M and Foolad M R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany 59(2): 206–216. https://doi.org/10.1016/j.envexpbot.2005.12.006
Azizoglu U. (2019). Bacillus thuringiensis as a biofertilizer and biostimulator: A mini-review of the little-known plant growth-promoting properties of Bt. Current Microbiology 76(11): 1379–1385. https://doi.org/10.1007/s00284-019-01705-9
Batista M B and Dixon R. (2019). Manipulating nitrogen regulation in diazotrophic bacteria for agronomic benefit. Biochemical Society Transactions 47(2): 603–614. https://doi.org/10.1042/BST20180342
Brunetti C, Saleem A R, Rocca G D, Emiliani G, De Carlo A, Balestrini R, Khalid A, Mahmood T and Centritto M. (2021). Effects of plant growth-promoting rhizobacteria strains producing ACC deaminase on photosynthesis, isoprene emission, ethylene formation and growth of Mucuna pruriens (L.) DC. in response to water deficit. Journal of Biotechnology 331(April): 53–62. https://doi.org/10.1016/j.jbiotec.2021.03.008
Cade-Menun B J. (2017). Characterizing phosphorus forms in cropland soils with solution 31P-NMR: Past studies and future research needs. Chemical and Biological Technologies in Agriculture 4(1): 1–12. https://doi.org/10.1186/s40538-017-0098-4
Carezzano M E, Strazzi F B A, Pérez V, Bogino P and Giordano W. (2023). Exopolysaccharides synthesized by rhizospheric bacteria: A review focused on their roles in protecting plants against stress. Applied Microbiology 3(4): 1249– 1261. https://doi.org/10.3390/applmicrobiol3040086
Chebotar V K, Chizhevskaya E P, Vorobyov N I, Bobkova V V, Pomyaksheva L V, Khomyakov Y V and Konovalov S N. (2022). The quality and productivity of strawberry (Fragaria × Ananassa Duch.) improved by the inoculation of PGPR Bacillus velezensis BS89 in field experiments. Agronomy 12(11): 2600. https://doi.org/10.3390/agronomy12112600
Costa O Y A, Raaijmakers J M and Kuramae E E. (2018). Microbial extracellular polymeric substances: Ecological function and impact on soil aggregation. Frontiers in Microbiology 9: 1–14. https://doi.org/10.3389/fmicb.2018.01636
da Silva L I, Oliveira I P D, Jesus E D C, Pereira M C, Pasqual M, Araújo R C D and Dória J. (2022). Fertilizer of the future: Beneficial bacteria promote strawberry growth and yield and may reduce the need for chemical fertilizer. Agronomy 12(10): 2465. https://doi.org/10.3390/agronomy12102465
Dar A, Zahir Z A, Iqbal M, Mehmood A, Javed A, Hussain A, Bushra and Ahmad M. (2021). Efficacy of rhizobacterial exopolysaccharides in improving plant growth, physiology, and soil properties. Environmental Monitoring and Assessment 193(8): 515. https://doi.org/10.1007/s10661-021-09286-6
de Andrade F M, de Assis Pereira T, Souza T P, Guimarães P H S, Martins A D, Schwan R F, Pasqual M and Dória J. (2019). Beneficial effects of inoculation of growth-promoting bacteria in strawberry. Microbiological Research 223–225(April): 120–128. https://doi.org/10.1016/j.micres.2019.04.005
de Moura G G D, de Barros A V, Machado F, Martins A D, da Silva C M, Durango L G C, Forim M, Alves E, Pasqual M and Doria J. (2021). Endophytic bacteria from strawberry plants control gray mold in fruits via production of antifungal compounds against Botrytis cinerea L. Microbiological Research 251(May): 126793. https://doi.org/10.1016/j.micres.2021.126793
de Moura G G D, de Barros A V, Machado F, da Silva Dambroz C M, Glienke C, Petters- Vandresen D A L, Alves E, Schwan R F, Pasqual M and Dória J. (2022). The friend within: Endophytic bacteria as a tool for sustainability in strawberry crops. Microorganisms 10(12): 2341. https://doi.org/10.3390/microorganisms10122341
Dhanya B E, Athmika and Rekha P D. (2021). Characterization of an exopolysaccharide produced by Enterobacter sp. YU16-RN5 and its potential to alleviate cadmium induced cytotoxicity in vitro. 3 Biotech 11(12): 1–11. https://doi.org/10.1007/s13205-021-03034-w
dos Santos C F C and Echer F R. (2019). Interactive effects of nitrogen-fixing bacteria inoculation and nitrogen fertilization on soybean yield in unfavorable edaphoclimatic environments. Scientific Reports 9(1): 1–11. https://doi.org/10.1038/s41598-019- 52131-7
Drobek M, Cybulska J, Ga??zka A, Feledyn-Szewczyk B, Marzec-Grz?dziel A, Sas-Paszt L, Gryta A, Trzci?ski P, Zdunek A and Fr?c M. (2021). The use of interactions between microorganisms in strawberry cultivation (Fragaria × Ananassa Duch.). Frontiers in Plant Science 12(November): 780099. https://doi.org/10.3389/fpls.2021.780099
du Preez C C and Burger R du T. (1988). Movement of ammonia plus ammonium from nitrogen fertilizers band placed in alkaline soils. The South African Journal of Plant and Soil 5: 51–56. https://doi.org/10.1080/02571862.1988.10634252
Ducousso-Détrez A, Fontaine J, Sahraoui A L H and Hijri M. (2022). Diversity of phosphate chemical forms in soils and their contributions on soil microbial community structure changes. Microorganisms 10(3): 609. https://doi.org/10.3390/microorganisms10030609
Es-Soufi R, Tahiri H, El Oualkadi A,Azaroual L, Martin P, Badoc A and Lamarti A. (2020). Evaluation of plant growth promoting ability of Bacillus amyloliquefaciens Bc2 and trichoderma harzianum TR in vivo. Agricultural Sciences 11(03): 247–259. https://doi.org/10.4236/as.2020.113016
Fan R, Cockerton H M, Armitage A D, Bates H, Cascant-Lopez E, Antanaviciute L, Xu X, Hu X and Harrison R J. (2018). Vegetative compatibility groups partition variation in the virulence of Verticillium dahliae on strawberry. PLoS ONE 13(2): 1–21. https://doi.org/10.1371/journal.pone.0191824
Frébortová J and Frébort I. (2021). Biochemical and structural aspects of cytokinin biosynthesis and degradation in bacteria. Microorganisms 9(6): 1314. https://doi.org/10.3390/microorganisms9061314
Giri J. (2011). Glycinebetaine and abiotic stress tolerance in plants. Plant Signaling & Behavior 6(11): 1746–1751. https://doi.org/10.4161/psb.6.11.17801
Grover M, Bodhankar S, Sharma A, Sharma P, Singh J and Nain L. (2021). PGPR mediated alterations in root traits: Way toward sustainable crop production. Frontiers in Sustainable Food Systems 4(January): 618230. https://doi.org/10.3389/fsufs.2020.618230
Haerani N, Syam’un E, Rasyid B and Haring F. (2021). Isolation and characterization of N-fixing and IAA producing rhizobacteria from two rice field agro-ecosystems in South Sulawesi, Indonesia. Biodiversitas 22(5): 2497–2503. https://doi.org/10.13057/biodiv/d220506331
Hanyabui E, Apori S O, Frimpong K A, Atiah K, Abindaw T, Ali M, Asiamah J Y and Byalebeka J. (2020). Phosphorus sorption in tropical soils. AIMS Agriculture and Food 5(4): 599–616. https://doi.org/10.3934/agrfood.2020.4.599
Haskett T L, Karunakaran R, Batista M B, Dixon R and Poole P S. (2022). Control of nitrogen fixation and ammonia excretion in Azorhizobium caulinodans. PLoS Genetics 18(6): 1–20. https://doi.org/10.1371/journal.pgen.1010276
He M and Dijkstra F A. (2014). Drought effect on plant nitrogen and phosphorus a meta?analysis. New Phytologist 204: 924–931. https://doi.org/10.1111/ nph.12952
Hindersah R, Ayu R, Aini P, Setiawati M R, Simarmata T, Indrawibawa D and Akutsu M. (2023). Boosting strawberry yield and fruit sweetness with humic substances and biofertilizer in soiless cocopeat-based culture. Jurnal Ilmiah Pertanian 20(3): 1–11. https://doi.org/10.31849/jip.v20i3.13242
Hindersah R, Purba P S J, Cahyaningrum D N, Nurbaity A, Kamaluddin N N and Akutsu M. (2022). Evaluation of strawberry seedling growth in various planting media amended with biofertilizer. KnE Life Sciences 2022: 358–367. https://doi.org/10.18502/kls.v7i3.11144
Hindersah R, Rahmadina I, Fitriatin B N, Setiawati M R and Indrawibawa D. (2021). Microbes-coated urea for reducing urea dose of strawberry early growth in soilless media. Jordan Journal of Biological Sciences 14(3): 593–599. https://doi.org/10.54319/jjbs/140328
Hindersah R, Suryatmana P, Setiawati M R, Fitriatin B N, Nurbaity A and Simarmata T. (2019). Salinity resistance of azotobacter isolated from saline soil in West Java. In R Sayyed, M Reddy and S Antonius. (eds.), Plant Growth Promoting Rhizobacteria (PGPR): Prospects for sustainable agriculture. Singapore: Springer, 323–334. https://doi.org/10.1007/978-981-13-6790-8_25
Hosseini A, Hosseini M and Schausberger P. (2022). Plant growth-promoting rhizobacteria enhance defense of strawberry plants against spider mites. Frontiers in Plant Science 12(January): 783578. https://doi.org/10.3389/fpls.2021.783578
Jiao X, Takishita Y, Zhou G and Smith D L. (2021). Plant associated rhizobacteria for biocontrol and plant growth enhancement. Frontiers in Plant Science 12(March): 634796. https://doi.org/10.3389/fpls.2021.634796
Khammayom N, Maruyama N and Chaichana C. (2022). The effect of climatic parameters on strawberry production in a small walk-in greenhouse. AgriEngineering 4(1): 104–121. https://doi.org/10.3390/agriengineering4010007
Kilic N, Dasgan H Y and Gruda N S. (2023). A novel approach for organic strawberry cultivation: Vermicompost-based fertilization and microbial complementary nutrition. Horticulturae 9(6): 1–16. https://doi.org/10.3390/horticulturae9060642
Kim T -J and Lim G -H. (2023). Salicylic acid and mobile regulators of systemic immunity in plants: Transport and metabolism. Plants (Basel, Switzerland) 12(5): 1013. https://doi.org/10.3390/plants12051013
Koskey G, Mburu S W, Awino R, Njeru E M and Maingi J M. (2021). Potential use of beneficial microorganisms for soil amelioration, phytopathogen biocontrol, and sustainable crop production in smallholder agroecosystems. Frontiers in Sustainable Food Systems 5(April): 1–20. https://doi.org/10.3389/fsufs.2021.606308
Kour D, Khan S S, Kaur T, Kour H, Singh G, Yadav A and Yadav A N. (2022). Drought adaptive microbes as bioinoculants for the horticultural crops. Heliyon 8(5): e09493. https://doi.org/10.1016/j.heliyon.2022.e09493
Kumar P, Rakesh K, Hansra B S, Dubey N and Kumar A. (2022). Potting substrate effect on yield and quality of strawberry (Fragaria × Ananassa) in terrace gardening. The Indian Journal of Agricultural Sciences 92(5): 667–669. https://doi.org/10.56093/ijas.v92i5.124805
Kumar P, Sharma N, Sharma S and Gupta R. (2020). Rhizosphere stochiometry, fruit yield, quality attributes and growth response to PGPR transplant amendments in strawberry (Fragaria × Ananassa Duch.) growing on solarized soils. Scientia Horticulturae 265: 109215. https://doi.org/https://doi.org/10.1016/j.scienta.2020.109215
Kumar S, Kundu M, Das A, Rakshit R, Siddiqui M W and Rani R. (2019). Substitution of mineral fertilizers with biofertilizer: An alternate to improve the growth, yield and functional biochemical properties of strawberry (Fragaria × Ananassa Duch.) cv. Camarosa. Journal of Plant Nutrition 42(15): 1818–1837. https://doi.org/10.1080/01904167.2019.1643363
Le T T H, Jun S E and Kim G-T. (2019). Current perspectives on the effects of plant growth-promoting rhizobacteria. Journal of Life Science 29(11): 1281–1293.
Levy-Booth D J, Prescott C E and Grayston S J. (2014). Microbial functional genes involved in nitrogen fixation, nitrification and denitrification in forest ecosystems. Soil Biology and Biochemistry 75: 11–25. https://doi.org/10.1016/j.soilbio.2014.03.021
Liu W, Tan M, Qu P, Huo C, Liang W, Li R, Jia Y, Fan X and Cheng C. (2022). Use of Piriformospora indica to promote growth of strawberry daughter plants. Horticulturae 8(5): 1–11. https://doi.org/10.3390/horticulturae8050370
Ma F, Yang X, Shi Z and Miao X. (2020). Novel crosstalk between ethylene- and jasmonic acid-pathway responses to a piercing–sucking insect in rice. New Phytologist 225(1): 474–487. https://doi.org/10.1111/nph.16111
Martínez-De La Cruz S, González-Fuentes J A, Robledo-Olivo A, Mendoza-Villarreal R, Hernández-Pérez A, Dávila-Medina M D and Alvarado-Camarillo D. (2022). Humic substances and rhizobacteria enhance the yield, physiology and quality of strawberries. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 50(1): 12578. https://doi.org/10.15835/nbha50112578
Maurya J K, Singh J P, Tomar S and Kumar R. (2017). Optimization of NPK fertilizers for higher yield and quality of strawberry (Gragaria x Ananassa Duch.) fruits. International Journal of Current Microbiology and Applied Sciences 6(8): 1534–1538. https://doi.org/10.20546/ijcmas.2017.609.188
Meena V S. (ed.) (2018). Role of rhizospheric microbes in soil: Volume 1: Stress management and agricultural sustainability. Singapore: Springer Nature Singapore Pte. Ltd. https://doi.org/10.1007/978-981-10-8402-7
Mei C, Amaradasa B S, Chretien R L, Liu D, Snead G, Samtani J B and Lowman S. (2021). A potential application of endophytic bacteria in strawberry production. Horticulturae 7(11): 1–11. https://doi.org/10.3390/horticulturae7110504
Mendes-Santos R, Kandasamy S and Cid-Rigobelo E. (2017). Ammonium and nitrate levels of soil inoculated with Azospirillum brasilense in maize. African Journal of Agricultural Research 12(11): 863–870. https://doi.org/10.5897/ajar2016.11800
Menezes-Blackburn D, Giles C, Darch T, George T S, Blackwell M, Stutter M, Shand C, Lumsdon D, Cooper P, Wendler R, Brown L, Almeida D S, Wearing C, Zhang H and Haygarth P M. (2018). Opportunities for mobilizing recalcitrant phosphorus from agricultural soils: A review. Plant and Soil 427(1): 5–16. https://doi.org/10.1007/s11104-017-3362-2333
Menezes-Blackburn D, Paredes C, Zhang H, Giles C D, Darch T, Stutter M, George T S, Shand C, Lumsdon D, Cooper P, Wendler R, Brown L, Blackwell M, Wearing C and Haygarth P M. (2016). Organic acids regulation of chemical–microbial phosphorus transformations in soils. Environmental Science & Technology 50(21): 11521–11531. https://doi.org/10.1021/acs.est.6b03017
Mikiciuk G, Sas-Paszt L, Mikiciuk M, Derkowska E, Trzci?ski P, G?uszek S, Lisek A, Wera-Bryl S and Rudnicka J. (2019). Mycorrhizal frequency, physiological parameters, and yield of strawberry plants inoculated with endomycorrhizal fungi and rhizosphere bacteria. Mycorrhiza 29(5): 489–501. https://doi.org/10.1007/s00572-019-00905-2
Mishra S, Roychowdhury R, Ray S, Hada A, Kumar A, Sarker U, Aftab T and Das R. (2024). Salicylic acid (SA)-mediated plant immunity against biotic stresses: an insight on molecular components and signaling mechanism. Plant Stress 11: 100427. https:// doi.org/https://doi.org/10.1016/j.stress.2024.100427
Molina-Favero C, Creus C M, Simontacchi M, Puntarulo S and Lamattina L. (2008). Aerobic nitric oxide production by Azospirillum brasilense Sp245 and its influence on root architecture in tomato. Molecular Plant-Microbe Interactions: MPMI 21(7): 1001–1009. https://doi.org/10.1094/MPMI-21-7-1001
Morais M C, Mucha A, Ferreira H, Gonçalves B, Bacelar E and Marques G. (2019). Comparative study of plant growth-promoting bacteria on the physiology, growth and fruit quality of strawberry. Journal of the Science of Food and Agriculture 99(12): 5341–5349. https://doi.org/10.1002/jsfa.9773
Morkeli?n? A, Rasiukevi?i?t? N and Valiuškait? A. (2021). Meteorological conditions in a temperate climate for Colletotrichum acutatum, strawberry pathogen distribution and susceptibility of different cultivars to anthracnose. Agriculture 11(1): 80. https://doi.org/10.3390/agriculture11010080
Mozafari A, Havas F and Ghaderi N. (2018). Application of iron nanoparticles and salicylic acid in in vitro culture of strawberries (Fragaria × Ananassa Duch.) to cope with drought stress. Plant Cell, Tissue and Organ Culture (PCTOC) 132: 511–523. https://doi.org/10.1007/s11240-017-1347-8
Murthy B N S and Pramanick K K. (2014). Strawberry cultivation in mild-tropics: Prospects and challenges from diseases’ perspective. Acta Horticulturae 1049: 151–159. https://doi.org/10.17660/ActaHortic.2014.1049.13
Naamala J and Smith D L. (2020). Relevance of plant growth promoting microorganisms and their derived compounds, in the face of climate change. Agronomy 10(8): 1179. https://doi.org/10.3390/agronomy10081179
Nam J H, Thibodeau A, Qian Y L, Qian M C and Park S H. (2023). Multidisciplinary evaluation of plant growth promoting rhizobacteria on soil microbiome and strawberry quality. AMB Express 13(1): 18. https://doi.org/10.1186/s13568-023-01524-z
Naraian R and Kumari S. (2017). Microbial production of organic acids. In V K Gupta, H Treichel, V O Shapaval, L A de Oliveira and M G Tuohy (eds.), Microbial functional foods and nutraceuticals. Hoboken, NJ: John Wiley and Sons Ltd., 93–121. https://doi.org/10.1002/9781119048961.ch5
Naseem M, Chaudhry A N, Jilani G, Alam T, Naz F, Ullah R, Zahoor M, Zaman S and Sohail. (2024). Exopolysaccharide-producing bacterial cultures of Bacillus cereus and Pseudomonas aeruginosa in soil augment water retention and maize growth. Heliyon 10(4): e26104. https://doi.org/10.1016/j.heliyon.2024.e26104
Negi Y K, Sajwan P, Uniyal S and Mishra A C. (2021). Enhancement in yield and nutritive qualities of strawberry fruits by the application of organic manures and biofertilizers. Scientia Horticulturae 283: 110038. https://doi.org/10.1016/j.scienta.2021.110038
Rhizobacteria for Strawberry Cultivation 334 Nett R S, Montanares M, Marcassa A, Lu X, Nagel R, Charles T C, Hedden P, Rojas M C and Peters R J. (2017). Elucidation of gibberellin biosynthesis in bacteria reveals convergent evolution. Nature Chemical Biology 13(1): 69–74. https://doi.org/10.1038/nchembio.2232
Nisarga G, Madaiah D, Dinesh Kumar M and Yogananda H S. (2020). Influence of fertigation and liquid plant growth promoting rhizo microbial consortia on yield of strawberry (Fragaria x Ananassa Duch.) under naturally ventilated polyhouse. International Journal of Current Microbiology and Applied Sciences 9(8): 256–262. https://doi.org/10.20546/ijcmas.2020.908.030
Olagoke F K, Bettermann A, Nguyen P T B, Redmile-Gordon M, Babin D, Smalla K, Nesme J, Sørensen S J, Kalbitz K and Vogel C. (2022). Importance of substrate quality and clay content on microbial extracellular polymeric substances production and aggregate stability in soils. Biology and Fertility of Soils 58(4): 435–457. https://doi.org/10.1007/s00374-022-01632-1
Olaniyan F T, Alori E T, Adekiya A O, Ayorinde B B, Daramola F Y, Osemwegie O O and Babalola O O. (2022). The use of soil microbial potassium solubilizers in potassium nutrient availability in soil and its dynamics. Annals of Microbiology 72(1): 45. https://doi.org/10.1186/s13213-022-01701-8
Paliwoda D, Mikiciuk G, Mikiciuk M, Kisiel A, Sas-Paszt L and Miller T. (2022). Effects of rhizosphere bacteria on strawberry plants (Fragaria × Ananassa Duch.) under water deficit. International Journal of Molecular Sciences 23(18): 10449. https://doi.org/10.3390/ijms231810449
Park Y, Solhtalab M, Thongsomboon W and Aristilde L. (2022). Strategies of organic phosphorus recycling by soil bacteria: Acquisition, metabolism, and regulation. Environmental Microbiology Reports 14(1): 3–24. https://doi.org/10.1111/1758- 2229.13040
Paul S, Parvez S S, Goswami A and Banik A. (2024). Exopolysaccharides from agriculturally important microorganisms: Conferring soil nutrient status and plant health. International Journal of Biological Macromolecules 262: 129954. https://doi.org/10.1016/j.ijbiomac.2024.129954
Piamonte M K, Asio V and Lina S. (2014). Morpho-physical and chemical characteristics of strongly weathered soils in Silago, Southern Leyte, Philippines. Annals of Tropical Research 36(2): 115–147. https://doi.org/10.32945/atr3627.2014
Pii Y, Graf H, Valentinuzzi F, Cesco S and Mimmo T. (2018). The effects of plant growth-promoting rhizobacteria (PGPR) on the growth and quality of strawberries. Acta Horticulturae 1217: 231–238. https://doi.org/10.17660/ActaHortic.2018.1217.29
Qian L, Ye X, Xiao J, Lin S, Wang H, Liu Z, Ma Y, Yang L, Zhang Z and Wu L. (2022). Nitrogen concentration acting as an environmental signal regulates cyanobacterial EPS excretion. Chemosphere 291: 132878. https://doi.org/10.1016/j.chemosphere.2021.132878
Quan A C Y, Nissom P M and Tung T L. (2022). A review on potential of plant growth promoting microorganisms in silviculture of neolamarckia cadamba to Industrial Timber Production Areas (ITPAs) in Malaysia. Chiang Mai University Journal of Natural Sciences 21(2): 1–12. https://doi.org/10.12982/CMUJNS.2022.027
Raaijmakers J M, Vlami M and de Souza J T. (2002). Antibiotic production by bacterial biocontrol agents. Antonie van Leeuwenhoek 81(1–4): 537–547. https://doi.org/10.1023/a:1020501420831335
Rahman M, Rahman M, As Sabir A, Mukta J A, Khan M M A, Mohi-Ud-Din M, Miah M G and Islam M T. (2018). Plant probiotic bacteria bacillus and paraburkholderia improve growth, yield and content of antioxidants in strawberry fruit. Scientific Reports 8(1): 1–11. https://doi.org/10.1038/s41598-018-20235-1
Rasulov B A, Yili A and Aisa H A. (2015). Removal of silver from aqueous solution by Azotobacter chroococcum; XU1 biomass and exopolysaccharide. Advances in Microbiology 05(03): 198–203. https://doi.org/10.4236/aim.2015.53019
Ravanbakhsh M, Sasidharan R, Voesenek L A C J, Kowalchuk G A and Jousset A. (2018). Microbial modulation of plant ethylene signaling: Ecological and evolutionary consequences. Microbiome 6(1): 52. https://doi.org/10.1186/s40168-018-0436-1
Redondo-Gómez S, García-López J V, Mesa-Marín J, Pajuelo E, Rodriguez-Llorente I D and Mateos-Naranjo E. (2022). Synergistic effect of plant-growth-promoting rhizobacteria improves strawberry growth and flowering with soil salinization and increased atmospheric CO2 levels and temperature conditions. Agronomy 12(9): 2082. https://doi.org/10.3390/agronomy12092082
Rueda D, Valencia G, Soria N, Rueda B B, Manjunatha B, Kundapur R R and Selvanayagam M. (2016). Effect of Azospirillum spp. and Azotobacter spp. on the growth and yield of strawberry (Fragaria vesca) in hydroponic system under different nitrogen levels. Journal of Applied Pharmaceutical Science 6(1): 048– 054. https://doi.org/10.7324/JAPS.2016.600108
Ryu C M, Farag M A, Pare P W and Kloepper J W. (2005). Invisible signals from the underground: Bacterial volatiles elicit plant growth promotion and induce systemic resistance. Plant Pathology Journal 21(1): 7–12. https://doi.org/10.5423/PPJ.2005.21.1.007
Saeed Q, Wang X, Haider F U, Ku?erik J, Mumtaz M Z, Jiri Holatko, Naseem M, Kintl A, Ejaz M, Naveed M, Brtnicky M and Mustafa A. (2021). Rhizosphere bacteria in plant growth promotion, biocontrol, and bioremediation of contaminated sites: A comprehensive review of effects and mechanisms. International Journal of Molecular Sciences 22(19): 10529. https://doi.org/10.3390/ijms221910529
Sandhya V and Ali S Z. (2015). The production of exopolysaccharide by Pseudomonas putida GAP-P45 under various abiotic stress conditions and its role in soil aggregation. Microbiology (Russian Federation) 84(4): 512–519. https://doi.org/10.1134/S0026261715040153
Schwember A R, Schulze J, del Pozo A and Cabeza R A. (2019). Regulation of symbiotic nitrogen fixation in legume root nodules. Plants 8(9): 333. https://doi.org/10.3390/plants8090333
Sharma P, Singh A, Kahlon C S, Brar A S, Grover K K, Dia M and Steiner R L. (2018). The role of cover crops towards sustainable soil health and agriculture: A review paper. American Journal of Plant Sciences 9: 1935–1951.
Simpson D. (2018). The economic importance of strawberry crops. In T Hytönen, J Graham and R Harrison (eds.), The genomes of rosaceous berries and their wild relatives: Compendium of plant genomes. Cham: Springer, 1–7. https://doi.org/10.1007/978-3-319-76020-9_1
Singh R K, Singh P, Li H B, Song Q Q, Guo D J, Solanki M K, Verma K K, Malviya M K, Song X -P, Lakshmanan P, Yang L-T and Li Y-R. (2020). Diversity of nitrogen-fixing rhizobacteria associated with sugarcane: A comprehensive study of plant-microbe interactions for growth enhancement in Saccharum spp. BMC Plant Biology 20(1): 1–21. https://doi.org/10.1186/s12870-020-02400-9
Sivapriya S L. (2018). Selection of efficient EPS producing and cyst forming Azotobacter isolates under stress condition. International Journal of Science and Research (IJSR) 7(6): 59–65. https://doi.org/10.21275/ART20183061
Subramanian S and Smith D L. (2015). Bacteriocins from the rhizosphere microbiome – From an agriculture perspective. Frontiers in Plant Science 6: 1–7. https://doi.org/10.3389/fpls.2015.00909
Sun F, Song C, Wang M, Lai D Y F, Tariq A, Zeng F, Zhong Q, Wang F, Li Z and Peng C. (2020). Long-term increase in rainfall decreases soil organic phosphorus decomposition in tropical forests. Soil Biology and Biochemistry 151(October): 108056. https://doi.org/10.1016/j.soilbio.2020.108056
Tang J, Li Y, Zhang L, Mu J, Jiang Y, Fu H, Zhang Y, Cui H, Yu X and Ye Z. (2023). Biosynthetic pathways and functions of Indole-3-Acetic acid in microorganisms. Microorganisms 11(8): 2077. https://doi.org/10.3390/microorganisms11082077
Timmusk S, El-Daim I A A, Copolovici L, Tanilas T, Kännaste A, Behers L, Nevo E, Seisenbaeva G, Stenström E and Niinemets U. (2014). Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments: Enhanced biomass production and reduced emissions of stress volatiles. PLoS ONE 9(5): e96086. https://doi.org/10.1371/journal.pone.0096086
Vega A, Delgado N and Handford M. (2022). Increasing heavy metal tolerance by the exogenous application of organic acids. International Journal of Molecular Sciences 23(10): 5438. https://doi.org/10.3390/ijms23105438
Vicente-Hernández A, Salgado-Garciglia R, Valencia-Cantero E, Ramírez-Ordorica A, Hernández-García A, García-Juárez P and Macías-Rodríguez L. (2019). Bacillus methylotrophicus M4-96 stimulates the growth of strawberry (Fragaria × Ananassa ‘Aromas’) plants in vitro and slows Botrytis cinerea infection by two different methods of interaction. Journal of Plant Growth Regulation 38(3): 765–777. https://doi.org/10.1007/s00344-018-9888-6
Vikram K V, Meena S L, Kumar S, Ranjan R, Nivetha N and Paul S. (2022). Influence of medium-term application of rhizobacteria on mustard yield and soil properties under different irrigation systems. Rhizosphere 24(October): 100608. https://doi.org/10.1016/j.rhisph.2022.100608
Vlassi A, Nesler A, Perazzolli M, Lazazzara V, Büschl C, Parich A, Puopolo G and Schuhmacher R. (2020). Volatile Organic compounds from Lysobacter capsici AZ78 as potential candidates for biological control of soilborne plant pathogens. Frontiers in Microbiology 11(August): 1–11. https://doi.org/10.3389/fmicb.2020.01748
Yang R, Liu P, Ye W, Chen Y, Wei D, Qiao C, Zhou B and Xiao J. (2024). Biological control of root rot of strawberry by Bacillus amyloliquefaciens strains CMS5 and CMR12. Journal of Fungi 10(6): 1–19. https://doi.org/10.3390/jof10060410
Yong D, Li Y, Gong K, Yu Y, Zhao S, Duan Q, Ren C, et al. (2022). Biocontrol of strawberry gray mold caused by Botrytis cinerea with the termite associated Streptomyces sp. Sdu1201 and Actinomycin D. Frontiers in Microbiology 13(November): 1–14. https://doi.org/10.3389/fmicb.2022.1051730
Zahedi S M, Hosseini M S, Hoveizeh N F, Kadkhodaei S and Vaculík M. (2023). Comparative morphological, physiological and molecular analyses of drought-stressed strawberry plants affected by SiO2 and SiO2-NPs foliar spray. Scientia Horticulturae 309: 111686. https://doi.org/10.1016/j.scienta.2022.111686
Zhang M, Peacock C L, Cai P, Xiao K Q, Qu C, Wu Y and Huang Q. (2021). Selective retention of extracellular polymeric substances induced by adsorption to and coprecipitation with ferrihydrite. Geochimica et Cosmochimica Acta 299: 15–34. https://doi.org/10.1016/j.gca.2021.02.015337
Zhao Y, Liang H, Zhang J, Chen Y, Dhital Y P, Zhao T and Wang Z. (2024). Isolation and characterization of Potassium-Solubilizing Rhizobacteria (KSR) promoting cotton growth in saline–sodic regions. Microorganisms 12: 1474. https://doi.org/10.3390/microorganisms12071474
Zhong Z, Chen Z, Xu Y, Ren C, Yang G, Han X, Ren G and Feng Y. (2018). Relationship between soil organic carbon stocks and clay content under different climatic conditions in central China. Forests 9: 598. https://doi.org/10.3390/f9100598