Establishment of High-Throughput Screening Assay using 384-Well Plate for Identification of Potent Antioxidants from Malaysian Local Plants Repository and Phytochemical Profile of Tetracera scandens
Main Article Content
Abstract
The increasing prevalence of chronic diseases and oxidative stress-related conditions has led to a growing interest in natural products with potent antioxidant properties. High-throughput screening (HTS) assays offer a promising solution for the rapid evaluation of numerous samples. This study aims to establish a robust HTS assay using the 2-Diphenyl-1-Picrylhydrazyl (DPPH) method to identify natural products with significant antioxidant capabilities, ensuring their safety profiles through cytotoxicity screening and phytochemical profiling. An automated liquid handler with the usage of a 384-well assay plate was employed in optimising and validating the 2,2-diphenyl-1-picrylhydrazyl (DPPH)-HTS assay by calculating the metrics. The HTS metrics include Z-prime (Z’) values of 0.72 and 0.63, signal to background (S/B) ratios of 3.54 and 9.02, and coefficient of variation percentages (%C/V) of 4.25 and 6.49 for each primary and secondary screenings, respectively. These values indicated that the HTS assay was excellent. By using optimised HTS-DPPH assay programme, a total of 363 plant extracts were screened and 58 (16%) were found to have potent antioxidant activity (a ‘yes’ score and EC50 < 50 ?g/mL). Out of these 363 extracts, only 80 plants were identified with herbarium and the screening results revealed that Tetracera scandens along with other 11 plants have potent antioxidant activities. T. scandens was the most potent and the methanol extract from its leaves recorded an EC50 value of 13.041± 0.82 ?g/mL. However, the aqueous extract of T. scandens leaves (TSLAE) was selected to allow any possibilities of using it for traditional herbal preparation. TSLAE presented an EC50 value of 13.76 ± 4.50 ?g/mL in the DPPH assay and was non-toxic towards normal cells with an IC50 value of > 100 ?g/mL. Secondary metabolites with promising antioxidant potentials were successfully identified using LC/MS and the library, which were mainly flavonoids (37.5%), phenolics (8.9%) and polyphenols (8.9%). HTS-DPPH is a robust and rapid technique for screening of antioxidative substances in plant extracts. The hit is non-toxic in vitro and rich in secondary metabolites that contribute to antioxidant activity.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Abourashed E A. (2005). Thin-layer densitometry as an alternative tool in the quantitative evaluation of the free radical scavenging activity of natural antioxidants. Zeitschrift für Naturforschung B 60(11): 1212–1218. https://doi.org/10.1515/znb-2005-1116
Ahmed Q U, Umar A, Taher M, Susanti D, Amiroudine M Z A M and Latip J. (2014). Phytochemical investigation of the leaves of Tetracera scandens Linn. and in vitro antidiabetic activity of hypoletin. In Kasim A, Wan Omar W, Abdul Razak N, Wahidah Musa N, Ab. Halim R and Mohamed S. (eds.), Proceedings of the International Conference on Science, Technology and Social Sciences (ICSTSS) 2012. Singapore: Springer, 591–608. https://doi.org/10.1007/978-981-287-077- 3_71
Akbari S, Abdurahman N H, Yunus R M, Alara O R and Abayomi O O. (2019). Extraction, characterization and antioxidant activity of fenugreek (Trigonella-Foenum Graecum) seed oil. Materials Science for Energy Technologies 2(2): 349–355. https://doi.org/10.1016/j.mset.2018.12.001
Alam M N, Bristi N J and Rafiquzzaman M. (2013). Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharmaceutical Journal 21(2): 143–152. https://doi.org/10.1016/j.jsps.2012.05.00250
Alara O R, Abdurahman N H, Abdul Mudalip S K and Olalere O A. (2019). Effect of drying methods on the free radicals scavenging activity of Vernonia amygdalina growing in Malaysia. Journal of King Saud University – Science 31(4): 495–499. https://doi.org/10.1016/j.jksus.2017.05.018
Amorati R and Valgimigli L. (2018). Methods to measure the antioxidant activity of phytochemicals and plant extracts. Journal of Agricultural and Food Chemistry 66(13): 3324–3329. https://doi.org/10.1021/acs.jafc.8b01079
Ayon N J. (2023). High-throughput screening of natural product and synthetic molecule libraries for antibacterial drug discovery. Metabolites 13(5): 625. https://doi.org/10.3390/metabo13050625
Badhani B, Sharma N and Kakkar R. (2015). Gallic acid: A versatile antioxidant with promising therapeutic and industrial applications. RSC Advances 5(35): 27540–27557. https://doi.org/10.1039/c5ra01911g
Bhat R, Crowe E P, Bitto A, Moh M, Katsetos C D, Garcia F U, Johnson F B, Trojanowski J Q, Sell C and Torres C. (2012). Astrocyte senescence as a component of Alzheimer’s disease. PLoS One 7(9): e45069. https://doi.org/10.1371/journal.pone.0045069
Borrel A, Huang R, Sakamuru S, Xia M, Simeonov A, Mansouri K, Houck K A, Judson R S and Kleinstreuer N C. (2020). High-throughput screening to predict chemical-assay interference. Scientific Reports 10(1): 3986. https://doi.org/10.1038/s41598-020-60747-3
Chai S C, Goktug A N and Chen T. (2015). Assay validation in high throughput screening – from concept to application. In Vallisuta O and Olimat S. (eds.), Drug discovery and development: From molecules to medicine. InTech Open. https://doi. org/10.5772/59765
Chan Y M, Ganapathy S S, Tan L, Alias N, Nasaruddin N H and Khaw W F. (2022). The burden of premature mortality among older adults: A population-based study in Malaysia. BMC Public Health 22(1): 1181. https://doi.org/10.1186/s12889-022-13608-9
Chanda S and Nagani K. (2010). Antioxidant capacity of Manilkara zapota L. leaves extracts evaluated by four in vitro methods. Nature and Science 8(10): 260–266.
Chen Z, Bertin R and Froldi G. (2013). EC50 estimation of antioxidant activity in DPPH. assay using several statistical programs. Food Chemistry 138(1): 414–420. https://doi.org/10.1016/j.foodchem.2012.11.001
de Torre M P, Cavero R Y, Calvo M I and Vizmanos J L. (2019). A simple and a reliable method to quantify antioxidant activity in vivo. Antioxidants (Basel) 8(5): 142. https://doi.org/10.3390/antiox8050142
Ezzati M, Yousefi B, Velaei K and Safa A. (2020). A review on anti-cancer properties of Quercetin in breast cancer. Life Sciences 248: 117463. https://doi.org/10.1016/j.lfs.2020.117463
Filipiak K, Hidalgo M, Silvan J M, Fabre B, Carbajo R J, Pineda-Lucena A, Ramos A, de Pascual-Teresa B and de Pascual-Teresa S. (2014). Dietary gallic acid and anthocyanin cytotoxicity on human fibrosarcoma HT1080 cells. A study on the mode of action. Food & Functions 5(2): 381–389. https://doi.org/10.1039/c3fo60465a
Gao J, Hu J, Hu D and Yang X. (2019). A role of gallic acid in oxidative damage diseases: A comprehensive review. Natural Product Communications 14(8): 1–8. https://doi.org/10.1177/1934578x19874174
Ghani M A, Barril C, Bedgood D R, Jr. and Prenzler P D. (2019). Development of a method suitable for high-throughput screening to measure antioxidant activity in a linoleic acid emulsion. Antioxidants (Basel) 8(9): 366. https://doi.org/10.3390/antiox8090366
Goktug A N, Chai S C and Chen T. (2013). Data analysis approaches in high throughput screening. In El-Shemy H A. (ed.), Drug discovery. InTech Open. https://doi.org/10.5772/52508
Imran M, Salehi B, Sharifi-Rad J, Gondal T A, Saeed F, Imran A, Shahbaz M, Fokou P V T, Arshad M U, Khan H, Guerreiro S G, Martins N, and Estevinho L M. (2019). Kaempferol: A key emphasis to its anticancer potential. Molecules 24(12): 2277. https://doi.org/10.3390/molecules24122277
Jones E, Michael S and Sittampalam G S. (2016). Basics of assay equipment and instrumentation for high throughput screening. In Markossian H et al. (eds.), NIH the assay guidance manual [ebook]. National Centre for Biotechnology Information. https://www.ncbi.nlm.nih.gov/books/NBK92014/
Kahkeshani N, Farzaei F, Fotouhi M, Alavi S S, Bahramsoltani R, Naseri R, Momtaz S, Abbasabadi Z, Rahimi R, Farzaei M H and Anupam Bishayee A. (2019). Pharmacological effects of gallic acid in health and diseases: A mechanistic review. Iranian Journal of Basic Medical Sciences 22(3): 225–237. https://doi.org/10.22038/ijbms.2019.32806.7897
Kasote D M, Katyare S S, Hegde M V and Bae H. (2015). Significance of antioxidant potential of plants and its relevance to therapeutic applications. International Journal of Biological Sciences 11(8): 982–991. https://doi.org/10.7150/ijbs.12096
Kawahara T, Takagi M and Shin-Ya K. (2012). JBIR-124: A novel antioxidative agent from a marine sponge-derived fungus Penicillium citrinum SpI080624G1f01. The Journal of Antibiotics (Tokyo) 65(1): 45–47. https://doi.org/10.1038/ja.2011.98
Kedare S B and Singh R P. (2011). Genesis and development of DPPH method of antioxidant assay. Journal of Food Science and Technology 48(4): 412–422. https://doi.org/10.1007/s13197-011-0251-1
Khan H, Ullah H, Aschner M, Cheang W S and Akkol E K. (2019). Neuroprotective effects of Quercetin in Alzheimer’s disease. Biomolecules 10(1): 59. https://doi.org/10.3390/biom10010059
Khaw W F, Chan Y M, Nasaruddin N H, Alias N, Tan L and Ganapathy S S. (2023). Malaysian burden of disease: Years of life lost due to premature deaths. BMC Public Health 23(1): 1383. https://doi.org/10.1186/s12889-023-16309-z
Kurutas E B. (2016). The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: Current state. Nutrition Journal 15(1): 71. https://doi.org/10.1186/s12937-016-0186-5
Kwon H S, Park J A, Kim J H and You J C. (2012). Identification of anti-HIV and anti-reverse transcriptase activity from Tetracera scandens. BMB Reports 45(3): 165–170. https://doi.org/10.5483/BMBRep.2012.45.3.165
Lee, M S, Kim C H, Hoang D M, Kim B Y, Sohn C B, Kim M R and Ahn J S. (2009). Genistein-derivatives from Tetracera scandens stimulate glucose-uptakein L6 myotubes. Biological and Pharmaceutical Bulletin 32(3): 504–508. https://doi.org/10.1248/bpb.32.50452
Lim K T, Zahari Z, Amanah A, Zainuddin Z and Adenan M I. (2016). Development of resazurin-based assay in 384-well format for high throughput whole cell screening of Trypanosoma brucei rhodesiense strain STIB 900 for the identification of potential anti-trypanosomal agents. Experimental Parasitology 162: 49–56. https://doi.org/10.1016/j.exppara.2016.01.002
Lima C C, Lemos R P L and Conserva L M. (2014). Dilleniaceae family: An overview of its ethnomedicinal uses, biological and phytochemical profile. Journal of Pharmacognosy and Phytochemistry 3(2): 181–204.
Lobo V, Patil A, Phatak A and Chandra N. (2010). Free radicals, antioxidants and functional foods: Impact on human health. Pharmacognosy Reviews 4(8): 118–126. https://doi.org/10.4103/0973-7847.70902
Lu Y, Khoo T J and Wiart C. (2014). Antioxidant activity determination of citronellal and crude extracts of Cymbopogon citratus by 3 different methods. Pharmacology: Pharmacy 05(04): 395–400. https://doi.org/10.4236/pp.2014.54047
Matias I, Morgado J and Gomes F C A. (2019). Astrocyte heterogeneity: Impact to brain aging and disease. Frontiers in Aging Neuroscience 11: 59. https://doi.org/10.3389/fnagi.2019.00059
Milanezi F G, Meireles L M, de Christo Scherer, M M, de Oliveira J P, da Silva A R, de Araujo M L, Endringer D C, Fronza M, Guimarães M C C and Scherer R. (2019). Antioxidant, antimicrobial and cytotoxic activities of gold nanoparticles capped with quercetin. Saudi Pharmaceutical Journal 27(7): 968–974. https://doi.org/10.1016/j.jsps.2019.07.005
Molyneux P. (2004). The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidantactivity. Songklanakarin Journal of Science and Technology (SJST) 26(2): 9.
Mor A, Tankiewicz-Kwedlo A, Krupa A and Pawlak D. (2021). Role of Kynurenine pathway in oxidative stress during neurodegenerative disorders. Cells 10(7): 1603. https://doi.org/10.3390/cells10071603
Muliyah E, Sulistijorini S, Sulistyaningsih Y and Rafi M. (2018). Tetracera scandens as a medicinal plant: Secretory structures, histochemistry, and antibacterial activity. Journal of Tropical Life Science 8(1): 68–74. https://doi.org/10.11594/jtls.08.01.12
Muscolo A, Mariateresa O, Giulio T and Mariateresa R. (2024). Oxidative stress: The role of antioxidant phytochemicals in the prevention and treatment of diseases. International Journal of Molecular Sciences 25(6): 3264. https://doi.org/10.3390/ijms25063264
Nguyen M T T, Awale S, Tezuka Y, Tran Q L, Watanabe H and Kadota S. (2004). Xanthine oxidase inhibitory activity of Vietnamese medicinal plants. Pharmaceutical Society of Japan 27(9): 1414–1421. https://doi.org/10.1248/bpb.27.1414
Ollinger J, Kumar A, Roberts D M, Bailey M A, Casey A and Parish T. (2019). A high-throughput whole cell screen to identify inhibitors of Mycobacterium tuberculosis. PLoS ONE 14(1): e0205479. https://doi.org/10.1371/journal.pone.0205479
Paricharak S, Mendez-Lucio O, Ravindranath A C, Bender A, IJzerman A P and van Westen G J P. (2018). Data-driven approaches used for compound library design, hit triage and bioactivity modeling in high-throughput screening. Briefings in Bioinformatics 19(2): 277–285. https://doi.org/10.1093/bib/bbw105
Park Y J, Seong S H, Kim M S, Seo S W, Kim M R and Kim H S. (2017). High-throughput detection of antioxidants in mulberry fruit using correlations between high-resolution mass and activity profiles of chromatographic fractions. Plant Methods 13: 108. https://doi.org/10.1186/s13007-017-0258-3
Pehlivan F E. (2017). Vitamin C: An antioxidant agent. In Hamza A H. (ed.), Vitamin C. InTech Open. https://doi.org/10.5772/intechopen.69660
Phongpaichit S, Nikom J, Rungjindamai N, Sakayaroj J, Hutadilok-Towatana N, Rukachaisirikul V and Kirtikara K. (2007). Biological activities of extracts from endophytic fungi isolated from Garcinia plants. FEMS Immunology & Medical Microbiology 51(3): 517–525. https://doi.org/10.1111/j.1574-695X.2007.00331.x
Proestos C, Lytoudi K, Mavromelanidou O K, Zoumpoulakis P and Sinanoglou V J. (2013). Antioxidant capacity of selected plant extracts and their essential oils. Antioxidants (Basel) 2(1): 11–22. https://doi.org/10.3390/antiox2010011
Ren J, Lu Y, Qian Y, Chen B, Wu T and Ji G. (2019). Recent progress regarding kaempferol for the treatment of various diseases. Experimental and Therapeutic Medicine 18(4): 2759–2776. https://doi.org/10.3892/etm.2019.7886
Rosdi M a A. (2018). The potential of Tetracera scandens (L.) as anti-diabetic agent via the activation of PPAR-Gamma. Universiti Sains Malaysia.
Rosenberg S, Simeonova I, Bielle F, Verreault M, Bance B, Le Roux I, Daniau M, Nadaradjane A, Gleize V, Paris S, Marie Y, Giry M, Polivka M, Figarella-Branger D, Aubriot-Lorton M et al. (2018). A recurrent point mutation in PRKCA is a hallmark of chordoid gliomas. Nature Communications 9(1): 2371. https://doi.org/10.1038/s41467-018-04622-w
Rusu M E, Fizesan I, Vlase L and Popa D S. (2022). Antioxidants in age-related diseases and anti-aging strategies. Antioxidants (Basel) 11(10): 1868. https://doi.org/10.3390/antiox11101868
Santos-Sánchez N F., Salas-Coronado, R, Villanueva C and Hernández-Carlos B. (2019). Antioxidant compounds and their antioxidant mechanism. In Shalaby E (ed.), Antioxidant. Intechopen. https://doi.org/10.5772/intechopen.85270
Sarian M N, Ahmed Q U, So’ad S Z M, Alhassan A M, Murugesu S, Perumal V, Mohamad S N A S, Khatib A and Latip J. (2017). Antioxidant and antidiabetic effects of flavonoids: A structure-activity relationship based study. BioMed Research International 2017: 8386065. https://doi.org/10.1155/2017/8386065
Sharifi-Rad M, Anil Kumar N V, Paolo Zucca P, Varoni E M, Dini L, Panzarini E, Rajkovic J, Fokou P V T, Azzini E, Peluso I, Mishra A P, Nigam M, El Rayess Y, El Beyrouthy M, Polito L et al. (2020). Lifestyle, oxidative stress, and antioxidants: Back and forth in the pathophysiology of chronic diseases. Frontiers in Physiology 11: 694. https://doi.org/10.3389/fphys.2020.00694
Sharma S and Vig A P. (2013). Evaluation of in vitro antioxidant properties of methanol and aqueous extracts of Parkinsonia aculeata L. leaves. Scientific World Journal 2013: 604865. https://doi.org/10.1155/2013/604865
Sui Y and Wu Z. (2007). Alternative statistical parameter for high-throughput screening assay quality assessment. Journal of Biomolecular Screening 12(2): 229–234. https://doi.org/10.1177/1087057106296498
Sykes M L and Avery V M. (2009). Development of an Alamar Blue viability assay in 384- well format for high throughput whole cell screening of Trypanosoma brucei brucei bloodstream form strain 427. The American Journal of Tropical Medicine and Hygiene 81(4): 665–674. https://doi.org/10.4269/ajtmh.2009.09-0015
Szymański P, Markowicz M and Mikiciuk-Olasik E. (2012). Adaptation of high-throughput screening in drug discovery-toxicological screening tests. International Journal of Molecular Sciences 13(1): 427–452. https://doi.org/10.3390/ijms13010427
Tan B L, Norhaizan M E, Liew W P and Sulaiman Rahman H. (2018). Antioxidant and oxidative stress: A mutual interplay in age-related diseases. Frontier in Pharmacology 9: 1162. https://doi.org/10.3389/fphar.2018.0116254
Tavana E, Mollazadeh H, Mohtashami E, Modaresi S M S, Hosseini A, Sabri H, Soltani A, Javid H, Afshari A R and Sahebkar A. (2020). Quercetin: A promising phytochemical for the treatment of glioblastoma multiforme. BioFactors 46(3): 356–366. https://doi.org/10.1002/biof.1605
Thanh T B, Thanh H N, Minh H P T, Le-Thi-Thu H, Ly H D T and Duc L V. (2015). Protective effect of Tetracera scandens L. leaf extract against CCl4-induced acute liver injury in rats. Asian Pacific Journal of Tropical Biomedicine 5(3): 221–227. https://doi.org/10.1016/s2221-1691(15)30009-5
Tlili N, Elfalleh W, Hannachi H, Yahia Y, Khaldi A, Ferchichi A and Nasri N. (2013). Screening of natural antioxidants from selected medicinal plants. International Journal of Food Properties 16(5): 1117–1126. https://doi.org/10.1080/10942912 .2011.576360
Treml J and Šmejkal K. (2016). Flavonoids as potent scavengers of hydroxyl radicals. Comprehensive Reviews in Food Science and Food Safety 15(4): 720–738. https://doi.org/10.1111/1541-4337.12204
Uddin Mazumdar M M, Islam M A, Hosen M T, Alam M S, Alam M N, Faruk M, Rahman M M, Sayeed M A, Rahman M M and Uddin S B. (2017). Estimation of in vivo neuropharmacological and in vitro antioxidant effects of Tetracera sarmentosa. Cogent Biology 3(1): 1300990. https://doi.org/10.1080/23312025.2017.1300990
Umar A, Ahmed Q U, Muhammad B Y, Dogarai B B and Soad S Z. (2010). Anti-hyperglycemic activity of the leaves of Tetracera scandens Linn. Merr. (Dilleniaceae) in alloxan induced diabetic rats. Journal of Ethnopharmacology 131(1): 140–145. https://doi.org/10.1016/j.jep.2010.06.016
Wang J, Sasse A and Sheridan H. (2019). Traditional Chinese medicine: From aqueous extracts to therapeutic formulae. In Dekebo A. (ed.), Plant extracts. Intech Open. https://doi.org/10.5772/intechopen.85733
Yang H, Dong Y, Du H, Shi H, Peng Y and Li X. (2011). Antioxidant compounds from propolis collected in Anhui, China. Molecules 16(4): 3444–3455. https://doi.org/10.3390/molecules16043444
Zahari Z, Jani N A, Amanah A, Latif M N, Majid M I and Adenan M I. (2014). Bioassay-guided isolation of a sesquiterpene lactone of deoxyelephantopin from Elephantopus scaber Linn. active on Trypanosome brucei rhodesience. Phytomedicine 21(3): 282–285. https://doi.org/10.1016/j.phymed.2013.09.011
Zduńska K, Dana A, Kolodziejczak A and Rotsztejn H. (2018). Antioxidant properties of ferulic acid and its possible application. Skin Pharmacology and Physiology 31(6): 332–336. https://doi.org/10.1159/000491755