Antihyperglycaemic Activity of Standardised Ethanolic Extract of Swietenia macrophylla King Seeds on Goto-Kakizaki Type 2 Diabetic Rats
Main Article Content
Abstract
Swietenia macrophylla (S. macrophylla), commonly known as “sky fruit”, belongs to the Meliaceae family and is predominantly distributed in the neotropical areas of Central America, Southern Asia and the Pacific region. The plant has a rich tradition of being utilised for its anti-diabetic properties and other health benefits. This study focused on the S. macrophylla seeds ethanolic extract (SMEE) to explore its antihyperglycemic effects in Goto-Kakizaki (GK) Type 2 diabetic rats. Bioactive compounds were extracted using maceration, and a reversed-phase high-performance liquid chromatography (RPHPLC) method was validated to separate two limonoids, swietenine and 3,6-O,O diacetyl swietenolide, from the extracts. The 500 mg/kg SMEE dosage significantly reduced fasting blood glucose levels, making it the selected treatment dose. The SMEE group consistently
improved glucose regulation during oral glucose tolerance test (OGTT) on the first (9.88 ± 0.69 mmol/L) and eighth (6.12 ± 0.30 mmol/L) days, showing lower initial fasting blood glucose levels. The RP-HPLC method validation confirmed high linearity, ensuring precise quantification within the 1.56 ?g/mL to 200 ?g/mL range for swietenine and 3,6-O,O diacetyl swietenolide. The content of these compounds in 1 mg of SMEE was determined as 27.5 ?g (2.75%) and 14.53 ?g (1.45%), respectively. This study provides robust evidence supporting the antihyperglycaemic properties of S. macrophylla seeds. Future studies could evaluate the long-term metabolic effects of S. macrophylla extract on glucose metabolism, oxidative stress and liver function.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Aralelimath V R and Bhise S B. (2012). Anti-diabetic effects of gymnema sylvester extract on streptozotocin-induced diabetic rats and possible beta-cell protective and regenerative evaluations. Digest Journal of Nanomaterials and Biostructures 7(1): 135–142.
Badole S L and Jangam G B. (2015). Animal models of diabetic cardiomyopathy. In Watson R R and Dokken B B. (eds.), Glucose intake and utilization in pre-diabetes and diabetes: Implications for cardiovascular disease (Part I). Academic Press, 181–190. https://doi.org/10.1016/B978-0-12-800093-9.00014-4
Brown N, Jennings S and Clements T. (2003). The ecology, silviculture and biogeography of mahogany (Swietenia macrophylla): A critical review of the evidence. Perspectives in Plant Ecology, Evolution and Systematics 6(1–2): 37–49. https://doi.org/10.1078/1433-8319-00041
Corathers S D, Peavie S and Salehi M. (2013). Complications of diabetes therapy. Endocrinology and Metabolism Clinics of North America 42(4): 947–970. https://doi.org/10.1016/j.ecl.2013.06.005120
Dahlstrom E and Sandholm N. (2017). Progress in defining the genetic basis of diabetic complications. Current Diabetes Reports 17: 80. https://doi.org/10.1007/s11892-017-0906-z
DeFronzo R, Ferrannini E, Groop L, Henry R, Herman W, Holst J, Hu F, Kahn R, Raz I, Shulman G, Simonson D, Testa M and Weiss R. (2015). Type 2 diabetes mellitus. Disease Primers 1: 1–22. https://doi.org/10.1038/nrdp.2015.19
Dewanjee S, Maiti A, Das A K, Mandal S C and Dey S P. (2009). Swietenine: A potential oral hypoglycemic from Swietenia macrophylla seed. Fitoterapia 80(4): 249–251. https://doi.org/10.1016/j.fitote.2009.02.004
Dewanjee S, Paul P, Dua T K, Bhowmick S and Saha A. (2020). Big leaf mahogany seeds: Swietenia macrophylla seeds offer possible phytotherapeutic intervention against diabetic pathophysiology. Nuts and Seeds in Health and Disease Prevention 2020: 543–565. https://doi.org/10.1016/B978-0-12-818553-7.00038-3
Eid A M M, Elmarzugi N A and El-Enshasy H A. (2013). A review on the phytopharmacological effect of Swietenia macrophylla. International Journal of Pharmacy and Pharmaceutical Sciences 5(Suppl. 3): 47–53.
Falah S, Suzuki T and Katayama T. (2008). Chemical constituents from Swietenia macrophylla bark and their antioxidant activity. Pakistan Journal of Biological Sciences 11(16): 2007–2012. https://doi.org/10.3923/pjbs.2008.2007.2012
Goh B H and Kadir H A. (2011). In vitro cytotoxic potential of Swietenia macrophylla King seeds against human carcinoma cell lines. Journal of Medicinal Plants Research 5(8): 1395–1404.
Guy R C. (2014). International conference on harmonisation. In Encyclopedia of Toxicology (3rd ed.). Academic Press, 1070–1072. https://doi.org/10.1016/B978-0-12-386454-3.00861-7
Hashim M A, Yam M F, Hor S Y, Lim C P, Asmawi M Z and Sadikun A. (2013). Anti-hyperglycaemic activity of Swietenia macrophylla king (meliaceae) seed extracts in normoglycaemic rats undergoing glucose tolerance tests. Chinese Medicine 8(1): 11. https://doi.org/10.1186/1749-8546-8-11
International Council for Harmonisation. (2019). ICH M10 – Bioanalytical method validation. https://database.ich.org/sites/default/files/M10_EWG_Step2_Presentation.pdf
Kadota S, Marpaung L, Kikuchi T Ekimoto, H. (1990). Constituents of the seeds of Swietenia mahagoni Jacq. I. isolation, structures, and 1H- and 13C-Nuclear magnetic resonance signal assignments of new tetranortriterpenoids related to Swietenine and Swietenolide. Chemical and Pharmaceutical Bulletin 38(3): 639–651. https://doi.org/10.1248/cpb.41.183
Kalaivanan K and Pugalendi K V. (2011a). Antihyperglycemic effect of the alcoholic seed extract of Swietenia macrophylla on streptozotocin-diabetic rats. Pharmacognosy Research 3(1): 67–71. https://doi.org/10.4103/0974-8490.79119
Kalaivanan K and Pugalendi K V. (2011b). Antioxidative and hypolipidemic efficacy of alcoholic seed extract of Swietenia macrophylla in streptozotocin diabetic rats. Journal of Basic and Clinical Physiology and Pharmacology 22(1–2): 11–21. https://doi.org/10.1515/JBCPP.2011.001
Kalpana K B, Devipriya N, Srinivasan M, Vishwanathan P, Thayalan K and Menon V P. (2011). Evaluating the radioprotective effect of hesperidin in the liver of Swiss albino mice. European Journal of Pharmacology 658(2–3), 206–212. https:// doi.org/10.1016/j.ejphar.2011.02.031
Laghmich A, Ladrière L, Malaisse-Lagae F and Malaisse W J. (1999). Long-term effects of glibenclamide and nateglinide upon pancreatic islet function in normal and diabetic rats. Pharmacological Research 40(6): 475–482. https://doi.org/10.1006/phrs.1999.0551
Lau W K, Goh B H, Kadir H A, Shu-Chien A C, Muhammad T S T and McPhee D J. (2015). Potent PPARγ ligands from Swietenia macrophylla are capable of stimulating glucose uptake in muscle cells. Molecules 20(12), 22301–22314. https://doi.org/10.3390/molecules201219847
Lin K K and Mon M H. (2020). Study on nutritional value and antidiabetic activity of Swietenia macrophylla King seed (Mahogany). Journal of the Myanmar Academy of Arts and Science XVIII(1): 235–242.
Maiti A, Dewanjee S, Jana G and Mandal S C. (2008). Hypoglycemic effect of Swietenia macrophylla seeds against type II diabetes. International Journal of Green Pharmacy 2(4), 224. https://doi.org/10.4103/0973-8258.44738
Maiti A, Dewanjee S, Kundu M and Mandal S C. (2007). Protective effect of methanol extract of Swietenia macrophylla seeds on oxidative states associated with streptozotocin induced diabetic rats. Natural Product Sciences 13(4): 295–299.
Maiti A, Dewanjee S and Mandal S C. (2007). In vivo evaluation of antidiarrhoeal activity of the seed of Swietenia macrophylla King (Meliaceae). Tropical Journal of Pharmaceutical Research 6(2): 711–716. https://doi.org/10.4314/tjpr.v6i2.14650
Maiti A, Dewanjee S and Sahu R. (2009). Isolation of hypoglycemic phytoconstituent from Swietenia macrophylla seeds. Phytotherapy Research 23(12): 1731–1733. https://doi.org/10.1002/ptr.2821
Maiti R, Das U K and Ghosh D. (2005). Attenuation of hyperglycemia and hyperlipidemia in streptozotocin-induced diabetic rats by aqueous extract of seed of Tamarindus indica. Biological and Pharmaceutical Bulletin 28(7): 1172–1176. https://doi.org/10.1248/bpb.28.1172
National Park. (2022). 2022 NParks Flora Fauna Web. https://www.nparks.gov.sg/ florafaunaweb/flora/3/1/3150
Naveen P, Lingaraju H B, Deepak M, Medhini B and Prasad K S. (2018). Method development and validation for the determination of caffeine: An alkaloid from Coffea arabica by high-performance liquid chromatography method. Pharmacognosy Research 10(1): 88–91. https://doi.org10.4103/pr.pr_79_17
Nilugal K C, Fattepur S, Asmani, Mohd F, Abdullah I., Vijendren S and Ugandar R E. (2017). Evaluation of wound healing activity of Swietenia macrophylla (meliaceae) seed extract in albino rats. American Journal of PharmTech Research 7(5): 113–124.
Östenson C -G and Efendic S. (2007). Islet gene expression and function in type 2 diabetes; studies in the Goto-Kakizaki rat and humans. Diabetes, Obesity and Metabolism 9(s2): 180–186. https://doi.org/10.1111/j.1463-1326.2007.00787.x
Palmer A M, Thomas C R, Gopaul N, Dhir S, Änggård E E, Poston L and Tribe R M. (1998). Dietary antioxidant supplementation reduces lipid peroxidation but impairs vascular function in small mesenteric arteries of the streptozotocin-diabetic rat. Diabetologia 41(2): 148–156. https://doi.org/10.1007/s001250050883
Pellegrino M, Broca C, Gross R, Roye M, Manteghetti M and Hillaire-Buys D. (1998). Development of a new model of type II diabetes in adult rats administered with streptozotocin and nicotinamide. Diabetes 47: 224–229. https://doi.org/10.2337/diabetes.47.2.224122
Rajasekaran, S., Sivagnanam, K., & Subramanian, S. (2005). Antioxidant effect of aloe vera gel extract in streptozotocin-induced diabetes in rats. Pharmacological Reports 57(1), 90–96. https://doi.org/10.1211/0022357055416
Rotruck J T, Pope A L, Ganther H E, Swanson A B, Hafeman D G and Hoekstra W G. (1973). Selenium: Biochemical role as a component of glutathione peroxidase. Science (New York) 179(4073): 588–590. https://doi.org/10.1126/science.179.4073.588
Schefer A B, Braumann U, Tseng L H, Spraul M, Soares M G, Fernandes J B, da Silva M F G F, Vieira P C and Ferreira A G. (2006). Application of high-performance liquid chromatography-nuclear magnetic resonance coupling to the identification of limonoids from mahogany tree (Swietenia macrophylla, Meliaceae) by stopped-flow 1D and 2D NMR spectroscopy. Journal of Chromatography A 1128(1–2): 152–163. https://doi.org/10.1016/j.chroma.2006.06.059
Stefanini-Oresic L. (2022). Validation of analytical procedures: ICH guidelines Q2(R2). Farmaceutski Glasnik 2(0): 1–34.
WHO. (2016). Global report on diabetes. France: WHO. https://www.who.int/publications/i/item/9789241565257
Wu J Z and Yan L -J. (2015). Streptozotocin-induced type 1 diabetes in rodents as a model for studying mitochondrial mechanisms of diabetic β-cell glucotoxicity. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy 8: 181–188. https://doi.org/10.2147/DMSO.S82272
Yan L -J. (2022). The nicotinamide/streptozotocin rodent model of Type 2 diabetes: Renal pathophysiology and redox imbalance features. Biomolecules 12(9): 1225. https:// doi.org/10.3390/biom12091225
Zambrana S, Lundqvist L C E, Veliz V, Catrina S, Gonzales E, Östenson C -G, Investigaciones I De, Bioquimicas F, Mayor U and Andres D S. (2018). Amaranthus caudatus stimulates insulin secretion in Goto-Kakizaki rats, a model of diabetes mellitus Type 2. Nutrients 89: 1–17. https://doi.org/10.3390/nu10010094