The Impact of Insecticides on Mycelial Growth of Metarhizium spp. and Their Efficacy in Controlling Larvae and Pupae of the House Fly (Musca domestica L.)
Main Article Content
Abstract
Metarhizium spp. are entomopathogenic hyphomycete fungi with great potential as biological control agents against insects and as a component within integrated pest management systems. This study evaluated 10 Metarhizium spp. isolates for their effectiveness against house fly larvae and pupae. The isolates with the highest infection rates were tested for compatibility with insecticides. NMMet_SS9/2 and NMMet_CLPK4/1 were the most effective, with infection rates of 86.67% and 60.00% for larvae and pupae, respectively. Both isolates were cultured on Potato Dextrose Agar (PDA) mixed with Cypas® 250 EC (100 mL and 50 mL per 6.25 L) and Tanidil®-T (100 g/L and 50 g/L) to assess the impact of insecticides on mycelial growth. After 28 days, the radial growth of NMMet_SS9/2 (81.33 mm) and NMMet_CLPK4/1 (77.67 mm) on PDA with Cypas® 250 EC (50 mL per 6.25 L) showed no significant differences (p > 0.05) compared to growth on PDA alone. A
spore suspension (1 × 10? spores/mL) of NMMet_SS9/2 and NMMet_CLPK4/1 cultured on PDA with Cypas® 250 EC (50 mL per 6.25 L) was used to control house fly larvae and pupae, resulting in mortality rates of 93.33% (NMMet_SS9/2) and 75.56% (NMMet_CLPK4/1), with infection rates of 77.78% and 71.11%, respectively. No significant differences (p > 0.05) were observed in mortality or infection rates compared to spores cultured on PDA without insecticides. These findings confirm that NMMet_SS9/2 and NMMet_CLPK4/1 are highly effective against house fly larvae and pupae and can proliferate on media containing Cypas® 250 EC at 50 mL per 6.25 L without compromising their insecticidal properties, making them promising candidates for integrated pest management strategies.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Abbas M N, Sajeel M and Kausar S. (2013). House fly (Musca domestica), a challenging pest; biology, management and control strategies. Elixir Entomology 64: 19333–19338. https://www.researchgate.net/publication/260285055
Abbasi E, Yazdani Z, Daliri S and Moemenbellah-Fard M D. (2023). Organochlorine knockdown-resistance (kdr) association in housefly (Musca domestica): A systematic review and meta-analysis. Parasite Epidemiology and Control 22(2023): e00310. https://doi.org/10.1016/j.parepi.2023.e00310
Abbott W S. (1925). A method of computing the effectiveness of insecticides. Journal of Economic Entomology 18: 265–267. https://doi.org/10.1093/jee/18.2.265a
Abd El-Ghany T M and Masmali I A. (2016). Fungal biodegradation of organophosphorus insecticides and their impact on soil microbial population. International Journal of Plant Pathology and Microbiology 7: 5. https://doi.org.10.4172/2157-7471.1000349
Abidin A F, Ekowati N and Ratnaningtyas N I. (2017). Insecticide compatibility to the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae. Scripta Biological 4(4): 273–279. https://doi.org/10.20884/1.sb.2017.4.4.695
Acevedo G R, Zapater M and Toloza A C. (2009). Insecticide resistance of house fly, Musca domestica (L.) from Argentina. Parasitology Research 105: 489–493. https://doi.org.10.1007/s00436-009-1425-x
Aktar W, Sengupta D and Chowdhury A (2009). Impact of pesticides use in agriculture: Their benefits and hazards. Interdisciplinary Toxicology 2: 1–12. https://doi.org/10.2478/v10102-009-0001-7137
Ali Md H, Lailatul F, Md Eunus A S, Mohajira B, Mehenaz S, Md Sabir H, Farha M J, Md. Saiful I F, Supriya A and Md. Selim R. (2024). Exploring the impact of culture media on life history characteristics of the house fly, Musca domestica L. (Diptera: Muscidae). Scientific African 24: e02133. https://doi.org/10.1016/j.sciaf.2024.e02133
Amutha M, Banu J G, Surulivelu T and Gopalakrishnan N. (2010). Effect of commonly used insecticides on the growth of white muscardine fungus, Beauveria bassiana under laboratory conditions. Journal of Biopesticides 3(1): 143–146. https://www.researchgate.net/publication/259357209
Antonio B F, Almeida J E M and Clovis L. (2001). Effect of Thiamethoxam on entomopathogenic microorganisms. Neotropical Entomology 30(3): 437–447. https://doi.org.10.1590/S1519-566X2001000300017
Apoorva S and Ramaswamy K. (2013). Compatibility of entomopathogenic fungi Metarhizium anisopliae (Ascomycota: Hypocreales) with few Pyrethroid and Organophosphate pesticides. Journal of Pure and Applied Microbiology 7(1): 721–726. https://doi.org.10.2478/v10045-010-0004-6
Balachander M, Remadevi O K, Sasidharan T O and Bai N S. (2009). Infectivity of Metarhizium anisopliae (Deuteromycotina: Hyphomycetes) isolates to the arboreal termite Odontotermes sp. (Isoptera: Termitidae). International Journal of Tropical Insect Science 29: 202–207. https://doi.org/10.1017/S1742758409990294
Barata C, Solayan A and Porte C. (2004). Role of B-esterases in assessing toxicity of organophosphorus (chlorpyrifos, malathion) and carbamate (carbofuran) pesticides to Daphnia magna. Aquatic Toxicology 66: 125–139. https://doi.org/10.1016/j.aquatox.2003.07.004
Bharathi N S, Pannerselvam M, Krishnaswamy S, Shanmugam A and Thattante P R. (2022). Pathogenic potential of Metarhizium anisopliae and Lecanicillium longisporum on tea mosquito bug, Helopeltis theivora Waterhouse (Hemiptera: Miridae). The Journal of Basic and Applied Zoology 83: 33. https://doi.org/10.1186/s41936-022-00297-4
Bihal R. Al-Khayri J M, Banu A N, Kudesia N, Ahmed F K, Sarkar R, Arora A and Abd- Elsalam K A. (2023). Entomopathogenic fungi: An eco-friendly synthesis of sustainable nanoparticles and their nanopesticide properties. Microorganisms 11: 1617. https://doi.org/10.3390/microorganisms11061617
Bugti G A, Bin W, Memon S A, Khaliq G and Jaffar M A. (2020). Entomopathogenic fungi: factors involved in successful microbial control of insect pests. European Journal of Entomology 17: 74–83. https://doi.org/10.3923/je.2020.74.83
Elliott M. (1980). Established pyrethroid insecticides. Journal of Pesticide Science 11: 119– 128. https://doi.org/10.1002/ps.2780110204
Farooq M and Freed S. (2016a). Combined effects of Beauveria bassiana (Hypocreales: Clavicipitaceae) and insecticide mixtures on biological parameters of Musca domestica (Diptera: Muscidae). Pakistan Journal of Zoology 48(5): 1465–1476.
Farooq M and Freed S. (2016b). Infectivity of housefly, Musca domestica (Diptera: Muscidae) to different entomopathogenic fungi. Brazilian Journal of Microbiology 47(4): 807–816. https://doi.org/10.1016/j.bjm.2016.06.002
Geden C J, Nayduch D, Scott J G, Burgess E R, Gerry A C, Kaufman P E, Thomson J, Pickens V and Machtinger E T. (2021). House fly (Diptera: Muscidae): Biology, pest status, current management prospects, and research needs. Journal of Integrated Pest Management 2(1): 1–38. https://doi.org/10.1093/jipm/pmaa021138
Iqbal W, Malik M F, Sarwar M K, Azam I, Iram N and Rashda A. (2014). Role of housefly (Musca domestica, Diptera; Muscidae) as a disease vector: A review. Journal of Entomology and Zoology Studies 2(2): 159–163.
Jantanapim J, Sirimungkararat S and Saksirirat S. (2015). Effect of pesticides on growth and efficacy of Beauveria bassiana (Balsamo) Vuillemin for controlling of cassava pink mealybug. KKU Science Journal 43(3): 469–479 (In Thai). https://ph01.tci-thaijo.org/index.php/KKUSciJ/article/view/249396
Kumar A, Mukherjee P, Guha A, Adyantaya S D, Mandale A B, Kumar R and Sastry M. (2000). Amphoterization of colloidal gold particles by capping with valine molecules and their phase transfer from water to toluene by electrostatic coordination with fatty amine molecules. Langmuir 16(25): 9775–9783. https://doi.org/10.1021/la000886k
Miana U, Galadima I, Gambo F and Zakaria D. (2018). A review on the use of entomopathogenic fungi in the management of insect pests of field crops. Journal of Entomology and Zoology Studies 6(1): 27–32. https://www.researchgate.net/publication/323445876
Mishra, S, Kumar P, Malik A and Satya S. (2011). Adulticidal and larvicidal activity of Beauveria bassiana and Metarhizium anisopliae against housefly, Musca domestica (Diptera: Muscidae), in laboratory and simulated field bioassays. Parasitology Research 108: 1483–1492. https://doi.org/10.1007/s00436-010-2203-5
Mohammed A A. (2018). Evaluation the efficacy of Metarhizium anisopliae and some plant extracts in controlling the housefly, Musca domestica in laboratory conditions. Kufa Journal for Agricultural Science 10: 1–17.
Olagunju E A. (2022). Housefly: Common zoonotic diseases transmitted and control. Journal of Zoonotic Diseases 6(1): 1–10. https://doi.org/10.22034/jzd.2022.14378
Oliveira C N de, Neves P M O J and Kawazoe L S. (2003). Compatibility between the entomopathogenic fungus Beauveria bassiana and insecticides used in coffee plantations. Scientia Agricola 60(4): 663–667. https://doi.org/10.1590/S0103-90162003000400009
Oliveira D G P, Cardoso R R, Mamprim A P and Angeli L F. (2016). Laboratory and field evaluation of a cypermethrin based insecticide for the control of Alphitobius Diaperinus Panzer (Coleoptera: Tenebrionidae) and its in-vitro effects on Beauveria Bassiana Bals. Vuill. (Hypocreales: Cordycipitaceae). Revista Brasileira de Ciencia vicola 18(3): 371–379. https://doi.org/10.1590/1806-9061-2015-0115
Oliveira R C, Oi C A, Castro do Nascimento M C, Ayrton Vollet-Neto A, Alves D A, Campos M C, Nascimento F and Wenseleers T. (2015). The origin and evolution of queen andfertility signals in Corbiculate bees. BMC Evolutionary Biology 15: 254. https://doi.org/10.1186/s12862-015-0509-8
Ong S Q, Ahmad H, Ab Majid A H and Jaal Z. (2019). Conservation of agricultural soil using entomopathogenic fungi: An agent with insecticides degradation potential. IOP Conference Series: Earth and Environmental Science 380: 012014. https://doi.org/10.1088/1755-1315/380/1/012014
Ong S Q, Ahmad H, Ab Majid A H and Jaal Z. (2017). Interaction between Metarhizium anisopliae (Met.) and the insecticides used for controlling house fly (Diptera: Muscidae) in poultry farm of Malaysia. Journal of Medical Entomology 54(6): 1626–1632. https://doi.org/10.1093/jme/tjx128
Pelizza S A, Schalamuk S, Simón M R, Stenglein S A, Pacheco-Marinof S G and Scorsetti C. (2018). Compatibility of chemical insecticides and entomopathogenic fungi for control of soybean defoliating pest, Rachiplusia nu. Revista Argentina de Microbiología 50(2): 189–201. https://doi.org/10.1016/j.ram.2017.06.002139
Ponganan K, Sirimungkararat S and Saksirirat W. (2015). Effect of stickers, UV protectant and common pesticides on survival and efficiency of Beauveria bassiana for control brown planthopper. Khon Kaen Agriculture Journal 43(Suppl. 1): 323–331.
Quesada-Moraga E, González-Mas N, Yousef-Yousef M, Garrido-Jurado I and Fernández-Bravo M. (2024). Key role of environmental competence in successful use of entomopathogenic fungi in microbial pest control. Journal of Pest Science 97: 1–15. https://doi.org/10.1007/s10340-023-01622-8
Reynolds J A. (2017). Epigenetic influences on diapause. Advances in Insect Physiology 53: 115–144. https://doi.org/10.1016/bs.aiip.2017.03.003
Saranraj P and Jayaprakash A. (2017). Agrobeneficial entomopathogenic fungi – Beauveria bassiana: A review. IAJMR 3(2): 1051–1087. https://doi.org/10.22192/
SAS Institute Inc. (2006). SAS user's guide: Statistics. SAS Institute Inc.
Schumacher V and Poehling H -M. (2012). In vitro effect of pesticides on the germination, vegetative growth, and conidial production of two strains of Metarhizium anisopliae. Fungal Biology 116: 121–132. https://doi.org/10.1016/j.funbio.2011.10.007
Sharififard M, Mossadegh M S, Vazirianzadeh B and Mahmoudabadi A Z. (2011a). Interactions between entomopathogenic fungus, Metarhizium anisopliae and sublethal doses of Spinosad for control of house fly, Musca domestica. Journal of Arthropod-Borne Diseases 5(1): 28–36. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3385566/pdf/ijad-5-28.pdf
Sharififard M, Mossadegh M S, Vazirianzadhe B and Mahmoudabadi A Z. (2011b). Laboratory pathogenicity of entomopathogenic fungi, Beauveria bassiana (Bals.) Vuill. and Metarhizium anisoplae (Metch.) Sorok. to larvae and adult of house fly, Musca domestica L. (Diptera: Muscidae). Asian Journal of Biological Sciences 4: 128–137. https://scialert.net/abstract/?doi=ajbs.2011.128.137
Tamai M A, Alves S B, Lopes R B, Faion M and Padulla L F L. (2002). Toxicidade de produtos fitossanitários para Beauveria bassaiana (Bals.) Vuill. Arquivos do Instituto Biologico 69: 89–96. https://doi.org/10.1590/1808-1657v69n3p0892002
Wang J -N, Hou J, Wu Y -Y, Guo S, Liu Q -M, Li T-Q and Gong Z -Y. (2019). Resistance of house fly, Musca domestica L. (Diptera: Muscidae), to five insecticides in Zhejiang Province, China: the situation in 2017. Canadian Journal of Infectious Diseases 2019: 4851914. https://doi.org/10.1155/2019/4851914