The Effect of Light Emitting Diodes (LEDs) Spectra on Growth, Morphological and Genetic Stability of Eurycoma longifolia Hairy Root Cultures through ISSR and DAMD Analysis
Main Article Content
Abstract
Light quality significantly influences plant growth and development by interacting with photoreceptors, leading to reversible and irreversible outcomes. This study provides novel insights into the species-specific effects of light-emitting diodes (LEDs) on the morphological characteristics and genetic stability of Eurycoma longifolia hairy root cultures (ELHRCs) under different light qualities. LED treatments included white (400 nm–700 nm), blue (440 nm), mint green (530 nm), red (660 nm) and a combination of blue with red (1:1) (440 nm + 660 nm) applied for 8, 10 and 12 weeks. Morphological changes and growth were assessed alongside genetic stability through direct amplification of minisatellite DNA regions (DAMD) and inter-simple sequence repeat (ISSR) markers analysis using 12 primers. The results showed genetic similarity of 90.6% after 8 weeks and 100% after 10 and 12 weeks (DAMD) and 100%, 98.2% and 90.3% after 8, 10 and 12 weeks, respectively (ISSR) under all LED treatments, confirming the genetic stability of the hairy roots. Additionally, the study demonstrated how spectral quality influences hairy roots growth and morphology. The high percentage of genetic similarity highlights LEDs as a promising tool for in vitro culture of ELHRCs. These findings represent the first comprehensive report on the combined effects of LED spectral quality on growth, morphological changes and genetic stability in ELHRCs.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Araújo D X, Rocha T T, de Carvalho A A, Bertolucci S K V, Medeiros A P R, Ribeiro F N S, Barbosa S M and Pinto J E B P. (2021). Photon flux density and wavelength influence on growth, photosynthetic pigments and volatile organic compound accumulation in Aeollanthus suaveolens (Catinga-de-mulata) under in vitro conditions. Industrial Crops and Products 168(February): 113597. https://doi.org/10.1016/j.indcrop.2021.113597198
Bachouch L, Sewraj N, Dupuis P, Canale L, Zissis G, Bouslimi L and El Amraoui L. (2021). An approach for designing mixed light-emitting diodes to match greenhouse plant absorption spectra. Sustainability (Switzerland) 13(8): 1–16. https://doi.org/10.3390/su13084329
Batista D S, Felipe S H S, Silva T D, de Castro K M, Mamedes-Rodrigues T C, Miranda N A, Ríos-Ríos A M, Faria D V, Fortini E A, Chagas K, Torres-Silva G, Xavier A, Arencibia A D and Otoni W C. (2018). Light quality in plant tissue culture: Does it matter? In Vitro Cellular and Developmental Biology – Plant 54(3): 195–215. https://doi.org/10.1007/s11627-018-9902-5
Bidabadi S S and Jain S M. (2020). Cellular, molecular, and physiological aspects of in vitro plant regeneration. Plants 9(6): 702. https://doi.org/10.3390/plants9060702
Boldaji H N, Dylami S D, Aliniaeifard S and Norouzi M. (2021). Efficient method for direct embryogenesis in phalaenopsis orchid. International Journal of Horticultural Science and Technology 9(2): 37–50. https://doi.org/10.22059/ijhst.2020.296696.339
Borowski E, Michałek S, Rubinowska K, Hawrylak-Nowak B and Grudziński W. (2015). The effects of light quality on photosynthetic parameters and yield of lettuce plants. Acta Scientiarum Polonorum, Hortorum Cultus 14(5): 177–188.
Chaves M C, Freitas J C E, Nery F C, Paiva R, Prudente D de O, Costa B G P, Daubermann A G, Bernardes M M and Grazul R M. (2020). Influence of colorful light-emitting diodes on growth, biochemistry, and production of volatile organic compounds in vitro of Lippia filifolia (Verbenaceae). Journal of Photochemistry and Photobiology B: Biology 212(July): 112040. https://doi.org/10.1016/j.jphotobiol.2020.112040
Chen I G J, Lee M S, Lin M K, Ko C Y and Chang W Te. (2018). Blue light decreases tanshinone IIA content in Salvia miltiorrhiza hairy roots via genes regulation. Journal of Photochemistry and Photobiology B: Biology 183: 164–171. https://doi.org/10.1016/j.jphotobiol.2018.04.013
Cioć M, Szewczyk A, Żupnik M, Kalisz A and Pawłowska B. (2018). LED lighting affects plant growth, morphogenesis and phytochemical contents of Myrtus communis L. in vitro. Plant Cell, Tissue and Organ Culture 132(3): 433–447. https://doi.org/10.1007/s11240-017-1340-2
Coelho A D, de Souza C K, Bertolucci S K V, de Carvalho A A, Santos G C, de Oliveira T, Marques E A, Salimena J P and Pinto J E B P. (2021). Wavelength and light intensity enhance growth, phytochemical contents and antioxidant activity in micropropagated plantlets of Urtica dioica L. Plant Cell, Tissue and Organ Culture 145(1): 59–74. https://doi.org/10.1007/s11240-020-01992-2
Daryono B S, Subiastuti A S, Fatmadanni A and Sartika D. (2019). Phenotypic and genetic stability of new Indonesian melon cultivar (Cucumis melo L. ‘Melonia’) based on ISSR markers. Biodiversitas 20(4): 1069–1075. https://doi.org/10.13057/biodiv/d200419
Devi S P, Kumaria S, Rao S R and Tandon P. (2014). Single primer amplification reaction (SPAR) methods reveal subsequent increase in genetic variations in micropropagated plants of Nepenthes khasiana Hook. f. maintained for three consecutive regenerations. Gene 538(1): 23–29. https://doi.org/10.1016/j.gene.2014.01.028
Doulos L T, Sioutis I, Tsangrassoulis A, Canale L and Faidas K. (2020). Revision of threshold luminance levels in tunnels aiming to minimize energy consumption at no cost: Methodology and case studies. Energies 13(7): 1707. https://doi.org/10.3390/en13071707199
Gai Q Y, Lu Y, Jiao J, Fu J X, Xu X J, Yao L and Fu Y J. (2022). Application of UV-B radiation for enhancing the accumulation of bioactive phenolic compounds in pigeon pea [Cajanus cajan (L.) Millsp.] hairy root cultures. Journal of Photochemistry and Photobiology B: Biology 228: 112406. https://doi.org/10.1016/j.jphotobiol.2022.112406
Gnasekaran P, Rahman Z A, Chew B L, Uddain J, Mariappan V, Appalasamy S and Subramaniam S. (2022). Regulation of chloroplast ultrastructure, adventitious bud anatomy and clonal fidelity of in vitro Zingiber officinale var. rubrum Theilade plantlets in response to LED spectral quality. Industrial Crops and Products 181(January): 114825. https://doi.org/10.1016/j.indcrop.2022.114825
Harirah A A and Khalid N. (2006). Direct regeneration and RAPD assessment of male inflorescence derived plants of Musa acuminata cv. Berangan. Asia Pacific Journal of Molecular Biology and Biotechnology 14(1): 11–17.
Huang W J, Ning G G, Liu G F and Bao M Z. (2009). Determination of genetic stability of long-term micropropagated plantlets of Platanus acerifolia using ISSR markers. Biologia Plantarum 53(1): 159–163. https://doi.org/10.1007/s10535-009-0025-z
Jiao J, Fu J X, Yao L, Gai Q Y, He X J, Feng X and Fu Y J. (2023). The growth, adventitious bud formation, bioactive flavonoid production, antioxidant response, and cryptochrome-mediated light signal transduction in Isatis tinctoria L. hairy root cultures exposed to LED lights. Industrial Crops and Products 195(February): 116496. https://doi.org/10.1016/j.indcrop.2023.116496
Jung W S, Chung I M, Hwang M H, Kim S H, Yu C Y and Ghimire B K. (2021). Application of light-emitting diodes for improving the nutritional quality and bioactive compound levels of some crops and medicinal plants. Molecules 26(5): 1477. https://doi.org/10.3390/molecules26051477
Krishna H, Alizadeh M, Singh D, Singh U, Chauhan N, Eftekhari M and Sadh R K. (2016). Somaclonal variations and their applications in horticultural crops improvement. 3 Biotech 6(1): 1–18. https://doi.org/10.1007/s13205-016-0389-7
Lamare A and Rao S R. (2015). Efficacy of RAPD, ISSR and DAMD markers in assessment of genetic variability and population structure of wild Musa acuminata colla. Physiology and Molecular Biology of Plants 21(3): 349–358. https://doi.org/10.1007/s12298-015-0295-1
Lee C T, Norlia B, Tnah L H, Lee S L, Ng C H, Ng K K S, Nor-Hasnida H, Nurul-Farhanah Z, Suryani C S and Nur-Nabilah A. (2018). Isolation and characterisation of SSR markers in tongkat ali (Eurycoma longifolia) using next-generation sequencing approach. Journal of Tropical Forest Science 30(3): 279–291. https://doi.org/10.26525/jtfs2018.30.3.279291
Leva A R and Petruccelli R. (2012). Monitoring of cultivar identity in micropropagated olive plants using RAPD and ISR markers. Biologia Plantarum 56(2): 373–376. https://doi.org/10.1007/s10535-012-0102-6
Li F, Li Y, Li S, Wu G, Niu X and Shen A. (2021). Green light promotes healing and root regeneration in double-root-cutting grafted tomato seedlings. Scientia Horticulturae 289(May): 110503. https://doi.org/10.1016/j.scienta.2021.110503
Long Y, Yang Y, Pan G and Shen Y. (2022). New insights into tissue culture plant-regeneration mechanisms. Frontiers in Plant Science 13(June): 926752. https://doi.org/10.3389/fpls.2022.926752
Matsumoto T, Akihiro T, Maki S, Mochida K, Kitagawa M, Tanaka D, Yamamoto S I and Niino T. (2013). Genetic stability assessment of wasabi plants regenerated from long-term cryopreserved shoot tips using morphological, biochemical and molecular analysis. Cryo-Letters 34(2): 128–136.
Mills T and Dunn B. (2016). LED grow lights for plant production. Oklahoma Cooperative Extension Service November: 1–4.
Monostori I, Heilmann M, Kocsy G, Rakszegi M, Ahres M, Altenbach S B, Szalai G, Pál M, Toldi D, Simon-Sarkadi L, Harnos N, Galiba G and Darko É. (2018). LED lighting – modification of growth, metabolism, yield and flour composition in wheat by spectral quality and intensity. Frontiers in Plant Science 9(May): 1–16. https://doi.org/10.3389/fpls.2018.00605
Mukherjee C, Samanta T and Mitra A. (2016). Redirection of metabolite biosynthesis from hydroxybenzoates to volatile terpenoids in green hairy roots of Daucus carota. Planta 243(2): 305–320. https://doi.org/10.1007/s00425-015-2403-4
Nazirah A, Nor-Hasnida H, Ismanizan I, Norlia B, Abdul-Rashih A, Muhammad-Fuad Y and Mohd-Saifuldullah A W. (2018). Production of 9-methoxycanthin-6-one in elicited eurycoma longifolia hairy root. Journal of Tropical Forest Science 30(4): 606–614. https://doi.org/10.26525/jtfs2018.30.4.606614
Nery L A, Batista D S, Rocha D I, Felipe S H S, Queiroz M da C, Silva P O, Ventrella M C and Otoni W C. (2021). Leaf development and anatomy of in vitro-grown Polygala paniculata L. are affected by light quality, gelling agents, and sucrose. Vegetos 34: 19–28. https://doi.org/10.1007/s42535-021-00192-3
Niangoran N U, Canale L, Tian F, Haba T C and Zissis G. (2016). Optimal spectrum modeling calculation with light emitting diodes set based on relative quantum efficiency. III International Symposium on Horticulture in Europe-SHE2016 1242: 815–822. https://doi.org/10.17660/ActaHortic.2019.1242.121
Nisa M U, Huang Y, Benhamed M and Raynaud C. (2019). The plant DNA damage response: Signaling pathways leading to growth inhibition and putative role in response to stress conditions. Frontiers in Plant Science 10(May): 1–12. https://doi.org/10.3389/fpls.2019.00653
Olle M and Viršile A. (2013). The effects of light-emitting diode lighting on greenhouse plant growth and quality. Agricultural and Food Science 22(2): 223–234. https://doi.org/10.23986/afsci.7897
Orłowska R. (2021). Barley somatic embryogenesis-an attempt to modify variation induced in tissue culture. Journal of Biological Research-Thessaloniki 28: 1–12. https://doi.org/10.1186/s40709-021-00138-5
Parab A R, Lynn C B and Subramaniam S. (2021). Assessment of genetic stability on in vitro and ex vitro plants of Ficus carica var. black jack using ISSR and DAMD markers. Molecular Biology Reports 48(11): 7223–7231. https://doi.org/10.1007/s11033-021-06714-1
Paradiso R and Proietti S. (2022). Light-quality manipulation to control plant growth and photomorphogenesis in greenhouse horticulture: The state of the art and the opportunities of modern LED systems. Journal of Plant Growth Regulation 41(2): 742–780. https://doi.org/10.1007/s00344-021-10337-y
Park S Y, Yeung E C and Paek K Y. (2010). Endoreduplication in Phalaenopsis is affected by light quality from light-emitting diodes during somatic embryogenesis. Plant Biotechnology Reports 4(4): 303–309. https://doi.org/10.1007/s11816-010-0148-x
Park Y and Runkle E S. (2018). Spectral effects of light-emitting diodes on plant growth, visual color quality, and photosynthetic photon efficacy: White versus blue plus red radiation. PLoS ONE 13(8): 1–14. https://doi.org/10.1371/journal.pone.0202386
Purayil F T, Robert G A, Gothandam K M, Kurup S S, Subramaniam S and Cheruth A J. (2018). Genetic variability in selected date palm (Phoenix dactylifera L.) cultivars of United Arab Emirates using ISSR and DAMD markers. 3 Biotech 8(2): 1–8. https://doi.org/10.1007/s13205-018-1108-3201
Razi A R M, Abdul-Aziz A, Alwee S S B S and Aziz R. (2013). Relationships between Malaysians cultivars of tongkat ali (Eurycoma longifolia Jack) obtained through RAPD analysis. International Journal of Biotechnology for Wellness Industries 2(1): 45. https://doi.org/10.6000/1927-3037.2013.02.01.7
Rehman S U, Choe K and Yoo H H. (2016). Review on a traditional herbal medicine, Eurycoma longifolia Jack (Tongkat Ali): Its traditional uses, chemistry, evidence-based pharmacology and toxicology. Molecules 21(3): 331. https://doi.org/10.3390/molecules21030331
Sale S, Subramaniam S and Mad’ Atari M F. (2023). Trends in the tissue culture techniques and the synthesis of bioactive compounds in Eurycoma longifolia Jack: Current status and future perspectives. Plants (Basel, Switzerland) 13(1): 107. https://doi.org/10.3390/plants13010107
Shin K S, Murthy H N, Heo J W and Paek K Y. (2003). Induction of betalain pigmentation in hairy roots of red beet under different radiation sources. Biologia Plantarum 47: 149–152. https://doi.org/10.1023/A:1027313805930
Tnah L H, Lee C T, Lee S L, Ng K K S, Ng C H and Hwang S S. (2011). Microsatellite markers of an important medicinal plant, Eurycoma longifolia (Simaroubaceae), for DNA profiling. American Journal of Botany 98(5): e130–e132. https://doi.org/10.3732/ajb.1000469
Torres O, Abad-Sojos S, Sánchez K, Carvalho R F and Carvalho S D. (2019). Epigenetics of light signaling during plant development. In R Alvarez-Venegas, C De-la-Peña and J Casas-Mollano. (eds.), Epigenetics in plants of agronomic importance: Fundamentals and applications. Cham: Springer, 223–246. https://doi.org/10.1007/978-3-030-14760-0_8
Yu K W, Murthy H N, Hahn E J and Paek K Y. (2005). Ginsenoside production by hairy root cultures of Panax ginseng: Influence of temperature and light quality. Biochemical Engineering Journal 23(1): 53–56. https://doi.org/10.1016/j.bej.2004.07.001
Yunos N M, Amin N D M, Jauri M H, Ling S K, Hassan N H and Sallehudin N J. (2022). The in vitro anti-cancer activities and mechanisms of action of 9-methoxycanthin-6- one from Eurycoma longifolia in selected cancer cell lines. Molecules 27(3): 1–18. https://doi.org/10.3390/molecules27030585
Zhang S, Ma J, Zou H, Zhang L, Li S and Wang Y. (2020). The combination of blue and red LED light improves growth and phenolic acid contents in Salvia miltiorrhiza Bunge. Industrial Crops and Products 158(September): 112959. https://doi.org/10.1016/j.indcrop.2020.112959
Zielińska S, Piątczak E, Kozłowska W, Bohater A, Jezierska-Domaradzka A, Kolniak-Ostek J and Matkowski A. (2020). LED illumination and plant growth regulators’ effects on growth and phenolic acids accumulation in Moluccella laevis L. in vitro cultures. Acta Physiologiae Plantarum 42(5): 1–10. https://doi.org/10.1007/s11738-020-03060-w
Zoghlami N, Bouamama B, Khammassi M and Ghorbel A. (2012). Genetic stability of long-term micropropagated Opuntia ficus-indica (L.) Mill. plantlets as assessed by molecular tools: Perspectives for in vitro conservation. Industrial Crops and Products 36(1): 59–64. https://doi.org/10.1016/j.indcrop.2011.08.006