Characterisation and Phylogenetic Analysis of the Complete Plastid Genome of Physalis minima L. from Malaysia

Main Article Content

Wei Lun Ng
Rebecca Jiayiin Ng
Douglas Law
Qiuying Ren
Charles Gnanaraj
Yoong Soon Yong
Shiou Yih Lee

Abstract

Physalis minima L. is an herbaceous plant with ethnobotanic importance across many Asian cultures. In this study, we sequenced and assembled the plastid genome (plastome) of a P. minima sample from Malaysia, and conducted intraspecific pairwise and phylogenetic analyses with available data of its relatives. Our sample had a plastome of 156,973 bp in size with a GC content of 37.5%. The genome was circular, consisting of a large single-copy of 87,196 bp, a small single-copy of 18,447 bp, and a pair of inverted repeats of 25,665 bp each. A total of 129 genes were annotated, including 84 CDSs, 37 tRNAs, and eight rRNAs. Between the China and Malaysia accession, 458 variable sites were identified, and the pairwise distance was 0.003. Phylogenetic analysis was conducted using the complete plastome sequence based on the maximum likelihood and Bayesian inference methods. The findings revealed that our sample was significantly differentiated from the accession from China, and that both P. minima accessions clustered away from P. angulata, the synonym suggested by certain taxonomic authorities. This study facilitates precise taxonomic identification of P. minima within ethnomedicinal frameworks, enabling its distinction from closely related or putatively synonymous species that may exhibit divergent phytochemical compositions. These results provide important insights into the genetic diversity and taxonomic status of P. minima, and support its informed use in future research, conservation and medicinal applications.

Article Details

How to Cite
Wei Lun Ng, Rebecca Jiayiin Ng, Douglas Law, Qiuying Ren, Charles Gnanaraj, Yoong Soon Yong, & Shiou Yih Lee. (2025). Characterisation and Phylogenetic Analysis of the Complete Plastid Genome of Physalis minima L. from Malaysia. Tropical Life Sciences Research, 36(3), 273-287. https://doi.org/10.21315/
Section
Short Communication

References

Feng S, Zheng K, Jiao K, Cai Y, Chen C, Mao Y, Wang L, Zhan X, Ying Q and Wang H. (2020). Complete chloroplast genomes of four Physalis species (Solanaceae): Lights into genome structure, comparative analysis, and phylogenetic relationships. BMC Plant Biology 20: 242. https://doi.org/10.1186/s12870-020-02429-w

Greiner S, Lehwark P and Bock R. (2019). OrganellarGenomeDRAW (OGDRAW) version 1.3. 1: expanded toolkit for the graphical visualization of organellar genomes. Nucleic Acids Research 47(W1): W59–W64. https://doi.org/10.1093/nar/gkz238

Hao D C and Xiao P G. (2015). Genomics and evolution in traditional medicinal plants: Road to a healthier life. Evolutionary Bioinformatics 11: 197–212. https://doi.org/10.4137/EBO.S31326

Hu S, Sablok G, Wang B, Qu D, Barbaro E, Viola R, Li M and Varotto C. (2015). Plastome organization and evolution of chloroplast genes in Cardamine species adapted to contrasting habitats. BMC Genomics 16: 306. https://doi.org/10.1186/s12864-015-1498-0

Katoh K and Standley D M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30(4): 772–780. https://doi.org/10.1093/molbev/mst010

Kim T S, Lee J R, Raveendar S, Lee G A, Jeon Y A, Lee H S, Ma K H, Lee S Y and Chung J W. (2016). Complete chloroplast genome sequence of Capsicum baccatum var. baccatum. Molecular Breeding 36: 110. https://doi.org/10.1007/s11032-016-0532-5

Kumar S, Stecher G and Tamura K. (2016). MEGA7: Molecular evolutionary genetics analysis 7.0 for bigger datasets. Molecular Biology Evolution 33(7): 1870–1874. https://doi.org/10.1093/molbev/msw054

Lem F F, Yong Y S, Goh S, Chin S N and Chee F T. (2022). Withanolides, the hidden gem in Physalis minima: A mini review on their anti-inflammatory, anti-neuroinflammatory and anti-cancer effects. Food Chemistry 377: 132002. https://doi.org/10.1016/j.foodchem.2021.132002

Liang Y, Liang L, Shi R, Luo R, Yue Y, Yu J, Wang X, Lin J, Zhou T, Yang M, Zhong L, Wang Y and Shu Z. (2024). Genus Physalis L.: A review of resources and cultivation, chemical composition, pharmacological effects and applications. Journal of Ethnopharmacology 324: 117736. https://doi.org/10.1016/j.jep.2024.117736

Librado P and Rozas J. (2009). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25(11): 1451–1452. https://doi.org/10.1093/bioinformatics/btp187

Liu Z, Lee S Y, Yeh C L, Averyanov L V, Liao W and Suetsugu K. (2024). Plastome analysis elucidates the phylogenetic placement of the mycoheterotrophic genus Yoania (Orchidaceae) and its plastomic degeneration during the evolution of mycoheterotrophy. Botanical Journal of the Linnean Society 206(4): 313–326. https://doi.org/10.1093/botlinnean/boae028

Mehmood F, Abdullah, Ubaid Z, Bao Y, Poczai P and Mirza B. (2020). Comparative plastomics of Ashwagandha (Withania, Solanaceae) and identification of mutational hotspots for barcoding medicinal plants. Plants 9(6): 752. https://doi.org/10.3390/plants9060752

Miller M A, Pfeiffer W and Schwartz T. (2011). The CIPRES science gateway:

A community resource for phylogenetic analyses. In Proceedings of the 2011 TeraGrid Conference: Extreme digital discovery. New York: Association for Computing Machinery, 1–8. https://doi.org/10.1145/2335755.2335836

MyBIS (2024). Malaysia biodiversity information system. https://www.mybis.gov.my/ (accessed on 14 May 2024).

Novita M, Rivai H and Misfadhila S. (2020). Review of phytochemical and pharmacological activities of Physalis minima. International Journal of Pharmaceutical Research and Applications 5(1): 51–56. https://doi.org/10.35629/7781-05015156

Pere K, Mburu K, Muge E K, Wagacha J M and Nyaboga E N. (2023). Molecular discrimination and phylogenetic relationships of Physalis species based on ITS2 and rbcL DNA barcode sequence. Crops 3(4): 302–319. https://doi.org/10.3390/crops3040027

POWO (2024). Plants of the World Online. https://powo.science.kew.org/

(accessed on 6 November 2024).

Rambaut A. (2018). FigTree. Tree figure drawing tool. http://tree.bio.ed.ac.uk/software/figtree/ (accessed on 1 October 2024).

Raveendar S, Jeon Y A, Lee J R, Lee G A, Lee K J, Cho G T, Ma K H, Lee S Y and Chung J W. (2015). The complete chloroplast genome sequence of Korean landrace “Subicho” pepper (Capsicum annuum var. annuum). Plant Breeding and Biotechnology 3: 88–94. https://doi.org/10.9787/PBB.2015.3.2.088

Ronquist F, Teslenko M, van Der Mark P, Ayres D L, Darling A, Höhna S, Larget B, Liu L, Suchard M A and Huelsenbeck J P. (2012). MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61(3): 539–542. https://doi.org/10.1093/sysbio/sys029

Sandoval-Padilla I, del Pilar Zamora-Tavares M, Ruiz-Sánchez E, Pérez-Alquicira J and Vargas-Ponce O. (2022a). Characterization of the plastome of Physalis cordata and comparative analysis of eight species of Physalis sensu stricto. PhytoKeys 210: 109–134. https://doi.org/10.3897/phytokeys.210.85668

Sandoval-Padilla I, Pérez-Alquicira J, Rodríguez A, del Pilar Zamora-Tavares M and Vargas-Ponce O. (2022b). The plastome of the husk tomato (Physalis philadelphica Lam., Solanaceae): A comparative analysis between wild and cultivated pools. Genetic Resources and Crop Evolution 69(3): 1391–1405. https://doi.org/10.1007/s10722-021-01334-x

Sandoval-Padilla I, Pérez-Alquicira J, Zamora-Tavares MDP, Rodríguez A, Cortés-Cruz M, Alcalá-Gómez G and Vargas-Ponce O. (2019). Complete sequence of wild Physalis philadelphica chloroplast genome. Mitochondrial DNA Part B 4(2): 3295–3297. https://doi.org/10.1080/23802359.2019.1673231

Sandoval-Padilla I, Vargas-Ponce O, Orejuela A, Pérez-Alquicira J, Ruiz-Sánchez E, Särkinen T, Dodsworth S and del Pilar Zamora-Tavares M. (2025). Comparative and phylogenomic plastome analysis of the Physalideae tribe (Solanaceae). Plant Systematics and Evolution 311(2): 1–17. https://doi.org/10.1007/s00606-025-01939-0

Stamatakis A. (2014). RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30(9): 1312–1313. https://doi.org/10.1093/bioinformatics/btu033

Sudmoon R, Kaewdaungdee S, Ho H X, Lee S Y, Tanee T and Chaveerach A. (2024). The chloroplast genome sequences of Ipomoea alba and I. obscura (Convolvulaceae): genome comparison and phylogenetic

analysis. Scientific Reports 14(1): 14078. https://doi.org/10.1038/s41598-024-64879-8

Tillich M, Lehwark P, Pellizzer T, Ulbricht-Jones E S, Fischer A, Bock R and Greiner S. (2017). GeSeq – versatile and accurate annotation of organelle genomes. Nucleic Acids Research 45(W1): W6–W11. https://doi.org/10.1093/nar/gkx391

Whitson M and Manos P S. (2005). Untangling Physalis (Solanaceae) from the Physaloids: a two-gene phylogeny of the Physalinae. Systematic Botany 30(1): 216–230. https://doi.org/10.1600/0363644053661841

Wu P, Xu C, Chen H, Yang J, Zhang X and Zhou S. (2021). NOVOWrap: an automated solution for plastid genome assembly and structure standardization. Molecular Ecology Resources 21(6): 2177–2186. https://doi.org/10.1111/1755-0998.13410

Xu K, Lin C, Lee S Y, Mao L and Meng K. (2022). Comparative analysis of complete Ilex (Aquifoliaceae) chloroplast genomes: Insights into evolutionary dynamics and phylogenetic relationships. BMC Genomics 23(1): 203. https://doi.org/10.1186/s12864-022-08397-9

Zamora-Tavares M D P, Sandoval-Padilla I, Chávez Zendejas A, Pérez-Alquicira J and Vargas-Ponce O. (2020). Complete chloroplast genome of Physalis chenopodifolia Lam. (Solanaceae). Mitochondrial DNA Part B 5(1): 162–163. https://doi.org/10.1080/23802359.2019.1698364

Zhan X, Zhang Z, Zhang Y, Gao Y, Jin Y, Shen C, Wang H and Feng S. (2022). Complete plastome of Physalis angulata var. villosa, gene organization, comparative genomics and phylogenetic relationships among Solanaceae. Genes 13(12): 2291. https://doi.org/10.3390/genes13122291

Zhang Z, Jin Y, Gao Y, Zhang Y, Ying Q, Shen C, Lu J, Zhan X, Wang H and Feng S. (2022). The complete chloroplast genomes of two Physalis species, Physalis macrophysa and P. ixocarpa: Comparative genomics, evolutionary dynamics and phylogenetic relationships. Agronomy 13(1): 135. https://doi.org/10.3390/agronomy13010135