In vitro Shoot Regeneration from Crown and Sucker Explants of Ananas comosus cv. Josapine

Main Article Content

Dahmendra Sriskanda
Soo Ping Khor
Li Vern Tan
Sreeramanan Subramaniam
Nurulhikma Md Isa
Bee Lynn Chew

Abstract

Pineapple, Ananas comosus (L.) Merr., is a highly nutritious, major tropical Amazonian fruit valued for its health properties. Josapine, a successfully commercialised Malaysian hybrid, bears sweet fruits and has a shorter gestation period as compared to other cultivars. The current study aims to evaluate the in vitro regeneration and shoot multiplication potential of Ananas comosus cv. Josapine using different types of explant sources and different concentrations of cytokinins. Pineapple crown and suckers were surface sterilised and cultured in MS medium supplemented with 6-Benzylaminopurine (BAP) at different concentrations (0.0 mg/L, 1.0 mg/L, 2.0 mg/L and 3.0 mg/L) for six weeks to evaluate the shoot regeneration efficiency of both explants used. In vitro induced shoots from crown and sucker explants were also cultured in different concentrations of BAP and kinetin (0.0 mg/L, 0.5 mg/L, 1.0 mg/L, 1.5 mg/L, 2.0 mg/L, 2.5 mg/L and 3.0 mg/L) for the induction of multiple shoots and roots. Results from the current study revealed that the highest percentage of shoot induction obtained from crown explants was 88.00% in the treatment of 2.0 mg/L BAP (3.50 ± 0.67 shoots per explant), whereas the treatment of 3.0 mg/L BAP resulted in the highest percentage of shoot induction (82.00%) from sucker explants. As for the response of in vitro shoots, the treatment of 2.0 mg/L BAP resulted in the highest number of shoots (6.85 ± 0.61 shoots per explant), whereas the highest number of roots (6.09 ± 0.46 roots per explant) was observed in MS media supplemented with 1.5 mg/L kinetin after 16 weeks of culture. This study demonstrates methods for in vitro shoot multiplication suitable for the micropropagation and commercialisation of the Josapine cultivar. This facilitates the mass production of disease-free, high-quality planting materials, leading to improved fruit quality and enhanced export potential of this pineapple cultivar.

Article Details

How to Cite
Dahmendra Sriskanda, Soo Ping Khor, Li Vern Tan, Sreeramanan Subramaniam, Nurulhikma Md Isa, & Bee Lynn Chew. (2025). In vitro Shoot Regeneration from Crown and Sucker Explants of Ananas comosus cv. Josapine. Tropical Life Sciences Research, 36(3), 135-155. https://doi.org/10.21315/
Section
Original Article

References

Ab Rahman N A, Abdul Latif N, Udin E Z, Awal A and Shamsiah A. (2021). In vitro regeneration and acclimatization of pineapple (Ananas comosus L. Merr. var. MD2). Food Research 4(5): 164–172. https://doi.org/10.26656/fr.2017.4(S5).010

Abdul Hamid M J and Ali A K. (2014). An assessment of the impact of technology on Josapine pineapple grown in Malaysia. Selangor, Malaysia: MARDI, Economics and Technology Management Research Centre.

Atawia A R, Abd EL-Latif F M, EL-Gioush S F, Sherif, S S and Kotb O M. (2016). Studies on micropropagation of pineapple (Ananas comosus L.). Middle East Journal of Agriculture Research 5(2): 224–232.

Awal A, Fazilah N N and Azvin M P. (2011). Micropropagation of pineapple (Ananas comosus L. Merr. ’Josapine’). Acta Horticulturae 923(23): 163–168. https://doi.org/10.17660/ActaHortic.2011.923.23

Azizan A, Lee A X, Hamid N A A, Maulidiani M, Mediani A, Ghafar S Z A, Zolkeflee N K Z and Abas F. (2020). Potentially bioactive metabolites from pineapple waste extracts and their antioxidant and ?-glucosidase inhibitory activities by 1H NMR. Foods 9(2): 173. https://doi.org/10.3390/foods9020173

Badou B T, Agbidinoukoun A, Cacaï G T H and Dossoukpèvi, R. C. (2018). Effects of system benzylaminopurine-adenine sulphate in combination with naphthalene acetic on in vitro regeneration and proliferation of pineapple (Ananas comosus (L.) Mill var. comosus). American Journal of Biotechnology and Bioscience 2(9): 1–15. https://doi.org/10.28933/ajbb-2018-05-1801

Balogun O L, Adewuyi S A, Disu O R, Afodu J O and Ayo-Bello T A. (2018). Profitability and technical efficiency of pineapple production in Ogun state, Nigeria. International Journal of Fruit Science 18(4): 436–444. https://doi.org/10.1080/15538362.2018.1470594

Be L V and Debergh P C. (2006). Potential low-cost micropropagation of pineapple (Ananas comosus). South African Journal of Botany 72(2): 191–194. https://doi.org/10.1016/j.sajb.2005.07.002

Bhatia P and Ashwath N. (2002). Development of a rapid method for micropropagation of a new pineapple [Ananas comosus (L.) Murr.] clone, “Yeppoon Gold.” Acta Horticulturae 57: 125–131. https://doi.org/10.17660/ActaHortic.2002.575.11

Bhatia S, Sharma K, Dahiya R, Bera T, Bhatia S and Sharma K. (2015). Micropropagation. In B Sharma and K Sharma (eds.), Modern applications of plant biotechnology in pharmaceutical sciences. Academic Press, 361–368. https://doi.org/10.1016/B978-0-12-802221-4.00011-X

Bhushan S, Kumar R, Kumar H and Shamim M Z. (2017). Culture media induced in vitro regeneration responses for mature embryo of wheat (Triticum aestivum L.). The Bioscan 12(3): 1379–1384.

Cai T, Meng X, Liu X, Liu T, Wang H, Jia Z, Yan D and Ren X. (2018). Exogenous hormonal application regulates the occurrence of wheat tillers by changing endogenous hormones. Frontiers in Plant Science 9: 1886. https://doi.org/10.3389/fpls.2018.01886

Cannon R J and Ho C -T (2018). Volatile sulfur compounds in tropical fruits. Journal of Food and Drug Analysis 26(2): 445–468. https://doi.org/10.1016/j.jfda.2018.01.014

Cárdenas-Aquino M D R, Camas-Reyes A, Valencia-Lozano E, López-Sánchez L, Martínez-Antonio A and Cabrera-Ponce J L. (2023). The cytokinins BAP and 2-iP modulate different molecular mechanisms on shoot proliferation and root development in lemongrass (Cymbopogon citratus). Plants 12(20): 3637. https://doi.org/10.3390/plants12203637

Carimi F and De Pasquale F. (2003). Micropropagation of citrus. In S M Jain and K Ishii (eds.), Micropropagation of woody trees and fruits. Dordrecht: Springer Netherlands, 589–619. https://doi.org/10.1007/978-94-010-0125-0_20

Chiet C H, Zulkifli, R M, Hidayat, T and Yaakob, H. (2014). Bioactive compounds and antioxidant activity analysis of Malaysian pineapple cultivars. AIP Conference Proceedings 1589(1): 398–399. https://doi.org/10.1063/1.4868827

De Oliveira Barretto L C, de Jesus da Silveira Moreira J, dos Santos J A B, Narendra N and dos Santos, R A R. (2013). Characterization and extraction of volatile compounds from pineapple (Ananas comosus L. Merril) processing residues. Food Science and Technology (Campinas) 33(4): 638–645. https://doi.org/10.1590/S0101-20612013000400007

De Silva A E, Kadi M A, Aziz M A and Kadzimin S. (2008). Callus induction in pineapple (Ananas comosus L.) cv. Moris and Josapine. International Journal of Agricultural Research 3(4): 261–267. https://doi.org/10.3923/ijar.2008.261.267

Devi M P, Thangjam K and Singh R K D. (2018). Influence of different doses of benzyl adenine with constant naphthalin acetic acid on callus induction and mass multiplication of pineapple (Ananas comosus L. Merr ) var. Kew. International Journal of Current Microbiology and Applied Sciences 7(07): 136–142. https://doi.org/10.20546/ijcmas.2018.707.017

DeWald M G, Moore G A and Evans M H. (1992). Micropropagation of pineapple (Ananas comosus L.). In Y P S Bajaj (eds.), High-tech and micropropagation II. Springer Berlin Heidelberg, 460–470. https://doi.org/10.1007/978-3-642-76422-6_24

Halim N. (2016). Policy intervention for the development of the pineapple industry in Malaysia. Malaysia: Food and Fertilizer Technology Center for the Asian and Pacific Region. http://ap.fftc.agnet.org/ap_db.php?id=716&print=1

Hamid N S, Bukhori M F and Jalil M. (2013). Direct and indirect plant regenerations of pineapple var. MD2 (Ananas comosus L.). Malaysian Applied Biology 42(1): 61–66.

Hossain F. (2016). World pineapple production: An overview. African Journal of Food, Agriculture, Nutrition and Development 16(4): 11443–11456. https://doi.org/10.18697/ajfand.76.15620

Hossain M A and Rahman S M M. (2011). Total phenolics, flavonoids and antioxidant activity of tropical fruit pineapple. Food Research International 44(3): 672–676. https://doi.org/10.1016/j.foodres.2010.11.036

Hossain M F, Akhtar S and Anwar M. (2015). Nutritional value and medicinal benefits of pineapple. International Journal of Nutrition and Food Sciences 4(1): 84–88. https://doi.org/10.11648/j.ijnfs.20150401.22

Ibrahim M A, Al-Taha H A and Seheem A A. (2013). Effect of cytokinin type and concentration, and source of explant on shoot multiplication of pineapple plant (Ananas comosus ’Queen’) in vitro. Acta Agriculturae Slovenica 101(1): 15–20. https://doi.org/10.2478/acas-2013-0002

Insani H, Harahap F and Diningrat DS. (2018). The effect of coconut water and benzyl amino purine (BAP) addition to the growth of pineapple from Sipahutar North Sumatera, Indonesia on in vitro condition. International Journal of Biological Research 6(2): 29–33. https://doi.org/10.14419/ijbr.v6i2.13697

Khan S, Nasib A. and Saeed B A. (2004). Employment of in vitro technology for large scale multiplication of pineapples (Ananas comosus). Pakistan Journal of Botany 36(3): 611–615.

Lakho M A, Jatoi M A, Solangi N, Abul-Soad A A, Qazi M A and Abdi G. (2023). Optimizing in vitro nutrient and ex vitro soil mediums-driven responses for multiplication, rooting, and acclimatization of pineapple. Scientific Reports 13(1): 1275. https://doi.org/10.1038/s41598-023-28359-9

Lasekan O and Hussein F K. (2018). Classification of different pineapple varieties grown in Malaysia based on volatile fingerprinting and sensory analysis. Chemistry Central Journal 12(1): 1–12. https://doi.org/10.1186/s13065-018-0505-3

Murashige T and Skoog F. (1962). A revised medium for rapid groth an bioassays with tobacco tissue cultures. Physiologia Plantarum, Copenhagen 15: 473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

Nikumbhe P H. (2013). In vitro technology for propagation of pineapple (Ananas comosus) cv. Kew. Bioinfolet 10(2B): 582–585.

Pamela E A -I, Sunday O S A and Dorcas O I. (2014). Influence of medium type and growth regulators on in vitro micropropagation of pineapple (Ananas comosus (L.), var. Smooth Cayenne). African Journal of Plant Science 8(9): 450–456. https://doi.org/10.5897/AJPS2014.1184

Priyadarshani S, Cai H, Zhou Q, Liu Y, Cheng Y, Xiong J, Patson D L, Cao S, Zhao H and Qin Y. (2019). An efficient Agrobacterium mediated transformation of pineapple with GFP-tagged protein allows easy, non-destructive screening of transgenic pineapple plants. Biomolecules 9(10): 617. https://doi.org/10.3390/biom9100617

Priyadarshani S V G N, Hu B, Li W, Ali H, Jia H, Zhao L, Ojolo S P, Azam S M, Xiong J, Yan M, Zia ur Rahman, Wu Q and Qin Y. (2018). Simple protoplast isolation system for gene expression and protein interaction studies in pineapple (Ananas comosus L.). Plant Methods 14(1): 95. https://doi.org/10.1186/s13007-018-0365-9

Reinhardt D H R C, Bartholomew D P, Souza F V D, Carvalho A C P P, de Pádua T R P, de Junghans D T and de Matos A P. (2018). Advances in pineapple plant propagation. Revista Brasileira de Fruticultura 40(6): e-302. https://doi.org/10.1590/0100-29452018302

Reis C, Silva A, Landgraf P, Batista J and Jacome G. (2018). Bioreactor in the micropropagation of ornamental pineapple. Ornamental Horticulture 24: 182–187. https://doi.org/10.14295/oh.v24i2.1181

Rosmaina A M, Zam S I and Zulfahmi. (2024). Low-cost of shoot propagation of pineapple (Ananas comosus l. Merr) cv Queen using gandasil-D and AB-mix. IOP Conference Series: Earth and Environmental Science 1362: 012014. https://doi.org/10.1088/1755-1315/1362/1/012014

Scherer R F, Garcia A C, de Freitas Fraga H P, Vesc L L D, Steinmacher D A and Guerra M P. (2013). Nodule cluster cultures and temporary immersion bioreactors as a high performance micropropagation strategy in pineapple (Ananas comosus var. comosus). Scientia Horticulturae 151: 38–45. https://doi.org/10.1016/j.scienta.2012.11.027

Shamsudin R, Daud W R W, Takriff M S and Hassan O. (2007). Physicochemical properties of the Josapine variety of pineapple fruit. International Journal of Food Engineering 3(5): Article 9. https://doi.org/10.2202/1556-3758.1115

Shu H, Li K, Sun W, Xu G, Zhan R and Chang S. (2019). The responses of pineapple varieties to forced-flower treatment at seedling stage. American Journal of Plant Sciences 10(12): 2151–2158. https://doi.org/10.4236/ajps.2019.1012151

Shukla M R, Piunno K, Saxena P K and Jones A M P. (2020). Improved in vitro rooting in liquid culture using a two piece scaffold system. Engineering in Life Sciences 20(3–4): 126–132. https://doi.org/10.1002/elsc.201900133

Smith, R. H. (2013). Plant tissue culture: Techniques and experiments (3rd ed.). Academic Press, Elsevier. https://doi.org/10.1017/S0014479712001433

Souza C P F, Souza E H de, Ledo C A da S and Souza F V D. (2018). Evaluation of the micropropagation potential of curauá pineapple hybrids for fiber production. Acta Amazonica 48(4): 290–297. https://doi.org/10.1590/1809-4392201800382

Su Y H and Zhang X S. (2014). Chapter Two: The hormonal control of regeneration in plants. In D B Galliot (ed.), Current topics in developmental biology (Vol 108: Mechanisms of regeneration). Academic Press, 35–69. https://doi.org/10.1016/B978-0-12-391498-9.00010-3

Suhaimi N. H and Fatah F A. (2019). Profitability of pineapple production (Ananas comosus) among smallholders in Malaysia. International Journal of Recent Technology and Engineering 8(4): 4201–4207. https://doi.org/10.35940/ijrte.D7780.118419

Sulaiman S, Yusuf N A and Asmah A. (2020). Effect of plant growth regulators on in vitro culture of pineapple (Ananas comosus L. Merr) MD2 variety. Food Research 4(S5): 110–114. https://doi.org/10.26656/fr.2017.4(S5).017

Usman I S, Abdulmalik M M, Sani L A and Muhammad A N. (2013). Development of an efficient protocol for micropropagation of pineapple (Ananas comosus L. var. smooth cayenne). African Journal of Agricultural Reseearch 8(18): 2053–2056. https://doi.org/10.5897/AJAR12.1763

Wijeratnam S W. (2016). Pineapple. In B Caballero, P M Finglas and F Toldrá (eds.), Encyclopedia of food and health. Academic Press, 380–384. https://doi.org/10.1016/B978-0-12-384947-2.00547-X

Yaacob J S and Mat Taha R. (2017). Kinetin induces chromosomal abnormalities in African Blue Lily (Agapanthus praecox ssp. minimus) grown in in vitro. Sains Malaysiana 46(12): 2417–2423. https://doi.org/10.17576/jsm-2016-4612-17

Zdrojewicz Z, Chorbinska J, Biezynski B and Krajewski P. (2018). Health-promoting properties of pineapple. Pediatria I Medycyna Rodzinna-Paediatrics and Family Medicine 14(2): 133–142. https://doi.org/10.15557/PiMR.2018.0013

Zhang J, Fu X, Su Y and Xie T. (2023). Establishment and optimization of an in vitro regeneration system in shredded pineapple. Horticultural Science and Technology 41(2): 224–235. https://doi.org/10.7235/HORT.20230021

Zuraida A, Shahnadz H N A, Harteeni A, Roowi S, Che Radziah M Z C and Subramaniam S. (2011). A novel approach for rapid micropropagation of Maspine pineapple (Ananas comosus L.) shoots using liquid shake culture system. African Journal of Biotechnology 10(19): 3859–3866.