Ecological Modelling of Potential Habitats for Indian Mackerel (Rastrelliger spp.) in the Western of Banda Sea using an Artificial Neural Network Approach

Main Article Content

Alfira Yuniar
Mukti Zainuddin
Safruddin
Muzzneena Ahmad Mustapha
Rachmat Hidayat
Siti Khadijah Srioktoviana

Abstract

Indian mackerel (Rastrelliger spp.) is a species with high catch volumes, amounting to approximately 451.750 tonnes over five years. This substantial yield holds significant potential for local communities, making sustainable utilisation crucial. This study focuses on the fishing season of Indian mackerel (Rastrelliger spp.) and the development of a habitat suitability model in the waters of the western of Banda Sea, Indonesia. The Fishing Season Index (FSI) method identified November as the peak fishing season, with the highest CPUE recorded at 220 kg trip-1. During this period, stable salinity levels were observed, which supported the reproductive processes of Indian mackerel. Additionally, high rainfall and strong winds facilitated local upwelling, influencing currents and bringing nutrients to the surface, which were consumed by mackerel larvae. The ANN (Artificial Neural Network) models used to estimate potential fishing zones for Indian mackerel demonstrated high accuracy, with an error rate of just 1.12%. The analysis revealed that salinity and currents were the most influential environmental parameters, contributing 16% and 14% to catch success during the peak fishing season with salinity levels at 34.2 psu and current velocity at 3.29 cm s-1. The implementation of this model in analysing Indian mackerel habitats and their relationship with environmental factors supports data and technology-driven fisheries management. This study also introduces a novel integration of the Fishing Season Index (FSI) method and ANN modelling to simultaneously identify peak fishing seasons and predict potential fishing zones based on dynamic oceanographic parameters. The application of machine learning in this model enables the identification of non-linear relationships between environmental variables and fish distribution with high accuracy, representing a significant advancement in predictive habitat modelling for Indian mackerel in Indonesian waters. This approach contributes to sustainable fisheries resource management and aligns with the achievement of SDG 14 in Indonesia.

Article Details

How to Cite
Alfira Yuniar, Mukti Zainuddin, Safruddin, Muzzneena Ahmad Mustapha, Rachmat Hidayat, & Siti Khadijah Srioktoviana. (2025). Ecological Modelling of Potential Habitats for Indian Mackerel (Rastrelliger spp.) in the Western of Banda Sea using an Artificial Neural Network Approach. Tropical Life Sciences Research, 36(3), 177-196. https://doi.org/10.21315/
Section
Original Article

References

Andrade H A and Garcia C A E. (1999). Skipjack tuna fishery in relation to sea surface temperature off the southern Brazilian coast. Fisheries Oceanography 8(4): 245–254. https://doi.org/10.1046/j.1365-2419.1999.00107.x

Aryanti N L N, Hendrawan I G and Suteja Y. (2018). Studi variabilitas produktivitas primer bersih serta hubungannya dengan El-Nino Southern Oscillasion (ENSO) dan Indian Ocean Dipole (IOD) di Laut Banda berdasarkan data satelit Aqua MODIS. Journal of Marine and Aquatic Sciences 5(1): 64. https://doi.org/10.24843/jmas.2019.v05.i01.p08

Ben-Hasan A, Walters C and Rashid Sumaila U. (2019). Effects of management on the profitability of seasonal fisheries. Frontiers in Marine Science 6: 1–8. https://doi.org/10.3389/fmars.2019.00310

Canales C M, Olea G, Jurado V and Espíondola M. (2024). Management Strategies Evaluation (MSE) in a mixed and multi-specific fishery based on indicator species: An example of small pelagic fish in Ecuador. Marine Policy 162: 106044. https://doi.org/10.1016/j.marpol.2024.106044

Dajan A. (1986). Pengantar metode statistik. Indonesia: LP3ES.

Datta P and Faroughi S A. (2023). A multihead LSTM technique for prognostic prediction of soil moisture. Geoderma 433: 116452. https://doi.org/10.1016/j.geoderma.2023.116452

Fuadi A and Wiryawan B. (2018). Pendugaan daerah penangkapan ikan lyang dengan citra satelit di perairan Aceh sekitar Pidie Jaya. Jurnal Teknologi Perikanan dan Kelautan 9(2): 149–161. https://doi.org/10.24319/jtpk.9.149-161

Guisan A and Zimmermann N E. (2000). Predictive habitat distribution models in ecology. Ecological Modelling 135(2–3): 147–186. https://doi.org/10.1016/S0304-3800(00)00354-9

Harahap Z A, Nasution H K and Leidonald R. (2020). Relationship of spatial and temporal characteristics of water conditions and Rastreliger kanagurta production in the Malacca Strait using satellite imagery. IOP Conference Series: Earth and Environmental Science 454: 012126. https://doi.org/10.1088/1755-1315/454/1/012126

Hidayat R, Zainuddin M, Mallawa A, Mustapha M A and Putri A R S. (2021). Mapping spatial-temporal skipjack tuna habitat as a reference for fish aggregating devices (Fads) settings in Makassar Strait, Indonesia. Biodiversitas 22(9): 3637–3647. https://doi.org/10.13057/biodiv/d220905

Huang Y, Liu B, Zhao H and Yang X. (2022). Spatial and temporal variation of droughts in the Mongolian plateau during 1959–2018 Based on the gridded self-calibrating palmer drought severity index. Water (Switzerland) 14(2): 230. https://doi.org/10.3390/w14020230

Ibrahim L A, Abu-Hashim M, Shaghaleh H, Elsadek E, Hamad A A A and Alhaj Hamoud Y. (2023). A comprehensive review of the multiple uses of water in aquaculture-integrated agriculture based on international and national experiences. Water (Switzerland) 15(2): 367. https://doi.org/10.3390/w15020367

Kamaruzzaman Y N, Mustapha M A and Ghaffar M A. (2021). Impacts of sea temperature rise on Rastrelliger kanagurta potential fishing grounds in the Exclusive Economic Zone (EEZ) off South China Sea. Sains Malaysiana 50(12): 3467–3479. https://doi.org/10.17576/jsm-2021-5012-01

Kenny E M, Ruelle E, Keane M T and Shalloo L. (2024). A hybrid model that combines machine learning and mechanistic models for useful grass growth prediction. Computers and Electronics in Agriculture 219: 108805. https://doi.org/10.1016/j.compag.2024.108805

Kementerian Kelautan dan Perikanan (KKP) (2022). Fisheries statistic. https://kkp.go.id/publikasi/akuntabilitas-kinerja/pelaporan-kinerja/detail/laporan-kinerja-kkp-2022664ea5c2405a8.html

Kurniawati F, Sanjoto T B and Geografi J J. (2015). Estimation of potential zones for catching small pelagic fish in Java Sea waters in the west and east seasons using AQUA MODIS imagery, geoimage (Spatial-Ecological-Regional). Geo Image (Spatial-Ecological-Regional) 4(2): 9. https://doi.org/https://doi.org/10.15294/geoimage.v4i2.7278

Lakhnigue A, Tandstad M, Fuller J, Sambe B and Caramelo A M. (2019). More than fifteen years of collaboration on the assessment of small pelagic fish off Northwest Africa: Lessons learned and future perspectives. Deep-Sea Research Part II 159: 92–102. https://doi.org/10.1016/j.dsr2.2018.12.004

Lima Bomfim J R A, da Costa Cunha G, Botero W G and Romão L P C. (2023). Use of shrimp farming waste in the production of biomaterials for sustainable agriculture and mitigation of environmental damage. JSFA Reports 3(12): 622–632. https://doi.org/10.1002/jsf2.165

Liu S, Liu Y, Alabia I D, Tian Y, Ye Z, Yu H, Li J and Cheng J. (2020). Impact of climate change on wintering ground of Japanese anchovy (Engraulis japonicus) using marine geospatial statistics. Frontiers in Marine Science 7: 1–15. https://doi.org/10.3389/fmars.2020.00604

Ministry of Environment and Forestry. (2021). Climate change vulnerability profile of Indonesian Coral Triangle Region. Jakarta: Ministry of Environment and Forestry of the Republic of Indonesia.

Mukherjee S, Pal J, Manna S, Saha A and Das D. (2023). El-Niño Southern Oscillation and its effects. In A Srivastav, A Dubey, A Kumar, S K Narang and M A Khan (eds.), Visualization techniques for climate change with machine learning and artificial intelligence. Elsevier, 207–228. https://doi.org/10.1016/b978-0-323-99714-0.00013-3

Nair P G. Joseph S, Pillai N and Abdulla M H A. (2023). Is there a significant long-term shift in phytoplankton in small pelagic fish diets along India’s southwest coast? Oceanologia 65(2): 297–309. https://doi.org/10.1016/j.oceano.2022.07.001

Nicolas F, Kamai T, Ben Gal A, Ochoa-Brito J, Daccache A, Ogunmokun F and Kisekka I. (2023). Assessing salinity impacts on crop yield and economic returns in the Central Valley. Agricultural Water Management 287: 108463. https://doi.org/10.1016/j.agwat.2023.108463

Nugraha E, Gunawan R, Danapraja S, Yusrizal, Kusdinar A, Waluyo A S, Hutajulu J, Prayitno H, Halim S and Sutisna D H.(2020). The sea surface temperature effect on the length and size of skipjack tuna (Katsuwonus pelamis) catches in the Banda Sea, Indonesia. AACL Bioflux 13(1): 1–18.

Nuno A I, Arcay B, Cotos J M and Varela J. (2005). Optimisation of fishing predictions by means of artificial neural networks, anfis, functional networks and remote sensing images. Expert Systems with Applications 29(2): 356–363. https://doi.org/10.1016/j.eswa.2005.04.008

Nurdin S, Mustapha M A, Lihan T and Abd Ghaffar M. (2015). Determination of potential fishing grounds of Rastrelliger kanagurta using satellite remote sensing and GIS technique. Sains Malaysiana 44(2): 225–232. https://doi.org/10.17576/jsm-2015-4402-09

Nurdin S, Mustapha M A, Lihan T and Abd Ghaffar M. (2017). Applicability of remote sensing oceanographic data in the detection of potential fishing grounds of Rastrelliger kanagurta in the archipelagic waters of Spermonde, Indonesia. Fisheries Research 196: 1–12. https://doi.org/10.1016/j.fishres.2017.07.029

Pradana G A. (2023). A study of prediction model for capture fisheries production in Indonesian sea waters using machine learning. JISA Jurnal Informatika dan Sains 6(01): 17–23. https://doi.org/10.31326/jisa.v6i1.1553

Prasad P V V, Bhatnagar N, Bhandari V, Jacob G, Narayan K, Echeverría R, Beintema N, Farah Cox P and Compton J. (2023). Patterns of investment in agricultural research and innovation for the Global South, with a focus on sustainable agricultural intensification. Frontiers in Sustainable Food Systems 7: 1108949. https://doi.org/10.3389/fsufs.2023.1108949

Putri A R S and Zainuddin M. (2019a). Application of remotely sensed satellite data to identify Skipjack tuna distributions and abundance in the coastal waters of Bone Gulf. IOP Conference Series: Earth and Environmental Science 241(1): 012012. https://doi.org/10.1088/1755-1315/241/1/012012

Putri A R S and Zainuddin M. (2019b). Impact of climate changes on Skipjack tuna (Katsuwonus pelamis) catch during May–July in the Makassar Strait. IOP Conference Series: Earth and Environmental Science 253(1): 1–7. https://doi.org/10.1088/1755-1315/253/1/012046

Safruddin, Zainuddin M and Rani C. (2014). Predicting potential fishing zones of large Pelagic fish in Mamuju Regency Waters. Jurnal IPTEKS PSP 1(2): 185–195.

Safruddin, Dewi Y K, Hidayat R, Umar M T and Zainuddin M. (2018). Studi kondisi oseanografi pada daerah penangkapan ikan pelagis besar dengan menggunakan pole and line di Perairan Teluk Bone [Study of the oceanographic conditions of fishing grounds of large pelagic fish using pole and line in the Gulf of Bone Waters] [Paper presentation]. Prosiding Simposium Nasional Kelautan dan Perikanan V, Universitas Hasanuddin, Makassar, 5 May.

Salem S B H, Gaagai A, Ben Slimene I, Moussa A B, Zouari K, Yadav K K, Eid M H, Abukhadra M R, El-Sherbeeny A M, Gad M, et al. (2023). Applying multivariate analysis and machine learning approaches to evaluating groundwater quality on the Kairouan Plain, Tunisia. Water (Switzerland) 15(19): 3495. https://doi.org/10.3390/w15193495

Sekadende B, Scott L, Anderson J, Aswani S, Francis J, Jacobs Z and Jebri F. (2020). The small pelagic fishery of the Pemba Channel, Tanzania: What we know and what we need to know for management under climate change. Ocean and Coastal Management 197: 105322. https://doi.org/10.1016/j.ocecoaman.2020.105322

Shaari N R and Mustapha M A. (2018). Predicting potential Rastrelliger kanagurta fish habitat using MODIS satellite data and GIS modeling: A case study of exclusive economic zone, Malaysia. Sains Malaysiana 47(7): 1369–1378. https://doi.org/10.17576/jsm-2018-4707-03

Srioktoviana S K, Zainuddin M, Hidayat R, Yuniar A, Mustapha M A, Farhum S A and Safruddin. (2024). Exploring the relationship between salinity front and the distribution and abundance of Yellowfin Tuna (Thunnus albacares) in the Western Banda Sea, Center of Indonesia Coral Triangle. IOP Conference Series: Earth and Environmental Science 1410(1): 012040. https://doi.org/10.1088/1755-1315/1410/1/012040

Torri M, Corrado R, Falcini F, Cuttitta A, Palatella L, Lacorata G and Patti B. (2018). Planktonic stages of small pelagic fishes (Sardinella aurita and Engraulis encrasicolus) in the central Mediterranean Sea: The key role of physical forcings and implications for fisheries management. Progress in Oceanography 162: 25–39. https://doi.org/10.1016/j.pocean.2018.02.009

Veron J E N, Devantier L M, Turak E, Green A L, Kininmonth S, Stafford-Smith M and Peterson N. (2009). Delineating the Coral Triangle. Galaxea, Journal of Coral Reef Studies 11(2): 91–100. https://doi.org/10.3755/galaxea.11.91

Wang C, Wang L, Ma G and Zhu L. (2025). CSF-YOLO: A lightweight model for detecting grape leafhopper damage levels. Agronomy 15(3): 741. https://doi.org/10.3390/agronomy15030741

Wang J, Chen X and Chen Y. (2016). Spatio-temporal distribution of skipjack in relation to oceanographic conditions in the west-central Pacific Ocean. International Journal of Remote Sensing 37(24): 6149–6164. https://doi.org/10.1080/01431161.2016.1256509

Wu L, Huang G, Fan J, Ma X, Zhou H and Zeng W. (2020). Hybrid extreme learning machine with meta-heuristic algorithms for monthly pan evaporation prediction. Computers and Electronics in Agriculture 168: 105115. https://doi.org/10.1016/j.compag.2019.105115

Yang Z, Chen W, Wang X, Liu B, Dong J and Deng Y. (2024). Suitable habitat of the scad fish (Decanters spp.) in Northern South China Sea predicted by MaxEnt model. Regional Studies in Marine Science 69(1): 103315. https://doi.org/10.1016/j.rsma.2023.103315

Yuniar A, Zainuddin M, Hidayat R, Srioktoviana S K, Safruddin, Mustapha M A and Farhum S A. (2024). Review: The effect of climate change on the distribution pattern of small pelagic fish around the world. Biodiversitas 25(8): 3325–3341. https://doi.org/10.13057/biodiv/d250804

Zainuddin M. (2011). Preliminary findings on distribution and abundance of flying fish in relation to oceanographic conditions of Flores Sea observed from multi-spectrum satellite images. Asian Fisheries Science 24(1): 20–30. https://doi.org/10.33997/j.afs.2011.24.1.003

Zainuddin M, Mallawa A, Safruddin, Farhum S A, Hidayat R, Sahni Putri A R and Ridwan M. (2020). Spatio-temporal thermal fronts distribution during January-December 2018 in the Makassar Strait: An important implication for pelagic fisheries. SPERMONDE: Jurnal Ilmu Kelautan 6(1): 11. https://doi.org/10.20956/jiks.v6i1.9899

Zainuddin M, Nelwan A, Farhum S A, Najamuddin, Hajar M A I, Kurnia M and Sudirman. (2013). Characterizing potential fishing zone of skipjack tuna during the southeast monsoon in the Bone Bay-Flores Sea using remotely sensed oceanographic data. International Journal of Geosciences 04(01): 259–266. https://doi.org/10.4236/ijg.2013.41a023

Zhang H and Zimba P V. (2017). Analyzing the effects of estuarine freshwater fluxes on fish abundance using artificial neural network ensembles. Ecological Modelling 359: 103–116. https://doi.org/10.1016/j.ecolmodel.2017.05.010