Isochrysis maritima Billard and Gayral Isolated from Penang National Park Coastal Waters as a Potential Microalgae for Aquaculture

Main Article Content

Mohammad Basri Eshak
Wan Maznah Wan Omar

Abstract


The importance of polyunsaturated fatty acid (PUFA) in microalgae was widely reported. In this study, six isolated microalgae from Teluk Aling, Penang National Park were screened for PUFA contents. Isochrysis maritima showed the best polyunsaturated fatty acids essential for aquaculture species compared to other microalgal species tested. This species is a good choice as aquaculture feed due to its small size (3 – 7 ?m), which is appropriate size for ingestion. The maximum specific growth rate of this species was also high (0.52–0.82 days-1) and comparable with many recognized aquaculture microalgae. On the other hand, this species was also able to be cultivated successfully in big volume (1000 L culture medium) with open hatchery condition, which will optimize the production cost. Low ratio of omega-6 to omega-3 essential fatty acids (EFA) recorded in I. maritima at any growth phases (0.32 - 0.45) also indicate optimal values for feeding.


 



Kepentingan asid lemak poli tak tepu (PUFA) dalam mikroalga telah dilaporkan secara meluas. Dalam kajian ini, enam mikroalga yang diasingkan dari Teluk Aling, Taman Negara Pulau Pinang telah disaring untuk kandungan PUFA. Isochrysis maritima menunjukkan bacaan asid lemak poli tak tepu yang terbaik yang penting untuk spesies akuakultur berbanding spesis microalga lain yang diuji. Spesis ini adalah pilihan yang baik sebagai pemakanan akuakultur kerana saiz yang kecil (3-7 ?m), iaitu saiz yang sesuai untuk pemakanan. Kadar maksimum pertumbuhan spesifik spesis ini juga tinggi (0.52 – 0.82 hari-1) dan setanding dengan kebanyakan mikroalga akuakultur yang telah diiktiraf. Selain itu, spesies ini juga boleh dikultur dengan jayanya dalam skala yang besar (1000 L media kultur) di tempat penetasan yang terbuka, yang akan mengoptimumkan kos pengeluaran. Nisbah omega-6 kepada omega-3 asid lemak (EFA) yang rendah dicatatkan pada I. maritima pada mana-mana fasa pertumbuhan (0.32 - 0.45) juga menunjukkan nilai yang optima sebagai makanan akuakultur.



Article Details

How to Cite
Isochrysis maritima Billard and Gayral Isolated from Penang National Park Coastal Waters as a Potential Microalgae for Aquaculture. (2017). Tropical Life Sciences Research, 28(2), 163–177. https://doi.org/10.21315/tlsr2017.28.2.12
Section
Original Article

References

Abel K, Deschmertzing H and Peterson J I. (1963). Classification of microorganisms by analysis of chemical composition. Journal of Bacteriology 85: 1039–1044.

Alkhamis Y and Qin J G. (2013). Cultivation of Isochrysis galbana in Phototrophic, Heterotrophic, and Mixotrophic conditions. BioMed Research International 2013: 1–9. https://doi.org/10.1155/2013/983465

Andersen R A, Berges, J A, Harrison P J and Watanabe M M. (2005). Appendix A-Recipes for freshwater and seawater media. In R A Andersen (Ed.), Algal Culturing Techniques. Burlington, MA: Elsevier Academic Press, 429-538.

Bandarra N M, Pereira P A, Batista I and Vilela M H. (2003). Fatty acids, sterols and ?-tocopherol in Isochrysis galbana. Journal of Food Lipids 10: 25–34. https://doi.org/10.1111/j.17454522.2003.tb00003.x

Borowitzka M A. (1997). Microalgae for aquaculture: Opportunities and constraints. Journal of Applied Phycology 9: 393–401. https://doi.org/10.1023/A:1007921728300

Bransden M P, Butterfield G M, Walden J, McEvoy L A and Bell J G. (2005). Tank colour and dietary arachidonic acid affects pigmentation, eicosanoid production and tissue fatty acid profile of larval Atlantic cod (Gadus morhua). Aquaculture 250: 328–340. https://doi.org/10.1016/j.aquaculture.2005.02.055

Brown M R, Jeffrey S W, Volkman J K and Dunstan G A. (1997). Nutritional properties of microalgae for mariculture. Aquaculture 151: 315-331. https://doi.org/10.1016/S0044-8486(96)01501-3

Brown M R. (2002). Nutritional value of microalgae for aquaculture. In: Cruz-Suarez L E, Ricque-Marie D, Tapia-Salazar M, Gaxiola-Cortes M G, Simoes N (Eds.), Avances en nutricion acuicola VI. Memorias del VI Symposium Internacional de Nutricion Acuicola. 3–6th September, Cancun, Mexico, 281-292. Carvalho A

P, Pontes I, Gaspar H and Malcata F X. (2006). Metabolic relationship between macro- and micronutrients, and the eicosapentaenoic acid and docosahexanoic acid contents of Pavlova lutheri. Enzyme and Microbial Technology 38: 358–366. https://doi.org/10.1016/j.enzmictec.2005.05.014

Cho S H, Ji S C, Hur S B, Bae J, Park I –S and Song Y C. (2007). Optimum temperature and salinity conditions for growth of green algae Chlorella ellipsoidea and Nannochloris oculata. Fisheries Science 73(5): 1050–1056. https://doi.org/10.1111/j.1444-2906.2007.01435.x

Chu W L, Phang S M and Goh S H. (1996). Environmental effects on growth and biochemical composition of Nitzschia inconspicua Grunow. Journal of Applied Phycology 8: 389–396. https://doi.org/10.1007/BF02178582

Dortch Q, Clayton J R, Thoresen S S and Ahmed S I. (1984). Species differences in accumulation of nitrogen pools in phytoplankton. Marine Biology 81(3): 237–250. https://doi.org/10.1007/BF00393218

DuBois M, Gilles K A, Hamilton J K, Rebers P A and Smith F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry 28: 350– 356. https://doi.org/10.1021/ac60111a017

Fidalgo J P, Abalde A C J and Gerrero C. (1995). Culture of the marine diatom Phaeodactylum tricornutum with different nitrogen sources: Growth, nutrient conversion and biochemical composition. Cahiers de Biologie Marine 36: 165–173.

Fidalgo J P, Cid A, Torres E, Sukenik A and Herrero C. (1998). Effects of nitrogen source and growth phase on proximate biochemical composition, lipid classes and fatty acid profile of the marine microalga Isochrysis galbana. Aquaculture 166: 105–116. https://doi.org/10.1016/S0044-8486(98)00278-6

Glencross B D. (2009). Exploring the nutritional demand for essential fatty acids by aquaculture species. Reviews in Aquaculture 1: 71–124. https://doi.org/10.1111/j.1753-5131.2009.01006.x

Guedes A C and Malcata F X. (2012). Nutritional value and uses of microalgae in aquaculture. In: Muchlisin Z A (Ed.), Aquaculture. InTech, 59–78. https://doi.org/10.5772/30576

Helm M M, Bourne N and Lovatelli A. (2004). Hatchery culture of bivalves: A practical manual. FAO Fisheries Technical Paper 471, Food and agriculture organization of the United Nations.

Hemaiswarya S, Raja R, Ravi Kumar R, Ganesan V and Anbazhagan C. (2010). Microalgae: A sustainable feed source for aquaculture. World Journal of Microbiology and Biotechnology 27(8): 1737–1746. https://doi.org/10.1007/s11274-010-0632-z

Kawachi M and Noël M-H. (2005). Chapter 5: Sterilization and sterile technique. In R A Andersen (Ed.), Algal Culturing Techniques. Burlington, MA: Elsevier Academic Press, 65-81.

Liu W, Pearce C M, Mckinley R S and Forster I P. (2016). Nutritional value of selected species of microalgae for larvae and early post-set juveniles of the Pacific geoduck clam, Panopea generosa. Aquaculture 452: 326–341. https://doi.org/10.1016/j. aquaculture.2015.10.019

Lowry O H, Rosebrough N J, Farr A L and Randall R J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193: 265–275.

Mansour M P, Frampton D. M. F, Nichols P D, Volkman J K and Blackburn S I. (2005). Lipid and fatty acid yield of nine stationary-phase microalgae: Applications and unusual C24–C28 polyunsaturated fatty acids. Journal of Applied Phycology 17(4): 287–300. https://doi.org/10.1007/s10811-005-6625-x

Martínez-Fernández E, Acosta-Salmón H and Southgate P C. (2006). The nutritional value of seven species of tropical microalgae for black-lip pearl oyster (Pinctada margaritifera, L.) larvae. Aquaculture 257: 491–503. https://doi.org/10.1016/j. aquaculture.2006.03.022

Mata T M, Martins A A and Caetano N S. (2010). Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews 14: 217–232. https://doi.org/10.1016/j.rser.2009.07.020

Muller-Feuga A. (2004). Microalgae for aquaculture. The current global situation and future trends. In: Richmond A (Ed.), Handbook of Microagal Culture. Oxford: Blackwell, 352–364.

Nalder, T D, Miller M R and Packer M A. (2015). Changes in lipid class content and composition of Isochrysis sp. (T-Iso) grown in batch culture. Aquaculture International 23(5): 1293–1312. https://doi.org/10.1007/s10499-015-9884-9

Pahl SL, Lewis D M, Chen F and King KD (2010) Heterotrophic growth and nutritional aspects of the diatom Cyclotella cryptica (Bacillariophyceae): Effect of some environmental factors. Journal of Bioscience and Bioengineering 109(3): 235–239. https://doi.org/10.1016/j.jbiosc.2009.08.480

Patil V, Reitan K I, Knudsen G, Mortensen L, Kallqvist T and Olsen E. (2005). Microalgae as source of polyunsaturated fatty acids for aquaculture. Current Topics in Plant Biology 6: 57–65.

Phatarpekar P, Sreepada R, Pednekar C and Achuthankutty C. (2000). A comparative study on growth performance and biochemical composition of mixed culture of Isochrysis galbana and Chaetoceros calcitrans with monocultures. Aquaculture 181(1-2): 141–155. https://doi.org/10.1016/S0044-8486(99)00227-6

Rausch T. (1981). The estimation of micro-algal protein content and its meaning to the evaluation of algal biomass I.: Comparison of methods for extracting protein. Hydrobiologia 78: 237–251. https://doi.org/10.1007/BF00008520

Reitan K I, Rainuzzo J R and Olsen Y. (1994). Effect of nutrient limitation on fatty acid and lipid content of marine microalgae. Journal of Phycology 30: 972–979. https://doi.org/10.1111/j.0022-3646.1994.00972.x

Renaud S. M, Thinh L. V, Lambrinidis G and Parry D L. (2002). Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures. Aquaculture 211: 195–214. https://doi.org/10.1016/S0044-8486(01)00875-4

Richmond A and Cheng-wu Z. (2001). Optimization of a flat plate glass reactor for mass production of Nannochloropsis sp. outdoors. Journal of Biotechnology 85: 259– 269. https://doi.org/10.1016/S0168-1656(00)00353-9

Samsudin L. (1992). Lipid and fatty acid composition of microalgae used in Malaysian aquaculture as live food for the early stage of penaeid larvae. Journal of Applied Phycology 4: 371–378. https://doi.org/10.1007/BF02185795

Sanchez S, Martýnez M E and Espinola F. (2000). Biomass production and biochemical variability of the marine microalga Isochrysis galbana in relation to culture medium. Biochemical Engineering Journal 6: 13–18. https://doi.org/10.1016/S1369-703X(00)00071-1

?irin S, Trobajo R, Ibanez C and Salvadó J. (2011). Harvesting the microalgae Phaeodactylum tricornutum with polyaluminum chloride, aluminium sulphate, chitosan and alkalinity-induced flocculation. Journal of Applied Phycology 24(5): 1067–1080. https://doi.org/10.1007/s10811-011-9736-6

Spolaore P, Joannis-Cassan C, Duran E and Isambert A. (2006). Commercial applications of microalgae. Journal of Bioscience and Bioengineering 101(2): 87–96. https://doi.org/10.1263/jbb.101.87

Tatsuzawa H and Takizawa E. (1995). Changes in lipid and fatty acid composition of Pavlova lutheri. Phytochemistry 40: 397–400. https://doi.org/10.1016/0031-9422(95)00327-4

Utting S D. (1985). Influence of nitrogen availability on the biochemical composition of three unicellular algae of commercial importance. Aquacultural Engineering 4: 175–190. https://doi.org/10.1016/0144-8609(85)90012-3

Van Wychen S and Laurens LML (2013) Determination of Total Solids and Ash in Algal Biomass - Laboratory Analytical Procedure ( LAP )

Yoshioka M, Yago T, Yoshie-Stark Y, Arakawa H and Morinaga T. (2012). Effect of high frequency of intermittent light on the growth and fatty acid profile of Isochrysis galbana. Aquaculture 338–341: 111–117. https://doi.org/10.1016/j.aquaculture. 2012.01.005

Zhu C J, Lee Y K and Chao T M. (1997). Effects of temperature and growth phase on lipid and biochemical composition of Isochrysis galbana TK1. Journal of Applied Phycology 9: 451–457. https://doi.org/10.1023/A:1007973319348