Using Non-supervised Artificial Neural Network for Determination of Anthropogenic Disturbance in a River System

Main Article Content

Nurul Ruhayu Mohd Rosli
Khairun Yahya

Abstract


The study of river water quality plays an important role in assessing the pollution status and health of the water bodies. Human-induced activities such as domestic activities, aquaculture, agriculture and industries have detrimentally affected the river water quality. Pinang River is one of the important rivers in Balik Pulau District that supplies freshwater for human consumption. A total of 442 physical and chemical parameters data of the Pinang River, Balik Pulau catchment were analysed to determine the sources of pollutants entering the river. Non-supervised artificial neural network (ANN) was employed to classify and cluster the river into upstream, middle-stream and downstream zones. The monitored data and nonsupervised ANN analysis demonstrated that the source of nitrate was derived from the upper part of the Pinang River, Balik Pulau while the sources of nitrite, ammonia and ortho-phosphate are predominant at the middle-stream of the river system. Meanwhile, the sources of high total suspended solid and biological oxygen demand were concentrated at the downstream of the river.


 



Kajian kualiti air sungai memainkan peranan yang penting dalam menilai status pencemaran dan kesihatan air. Aktiviti manusia seperti domestik, akuakultur, pertanian dan industri telah menjejaskan kualiti air sungai. Sungai Pinang adalah salah satu sungai penting di daerah Balik Pulau, yang membekalkan air tawar untuk kegunaan manusia. Parameter fizikal dan kimia di kawasan tadahan Sungai Pinang, Balik Pulau dianalisis untuk menentukan sumber bahan pencemaran yang memasuki sungai. ?Non-supervised artificial neural network? (ANN) telah digunakan untuk mengkelas dan mengkluster sungai kepada bahagian hulu, tengah dan hilir. Data yang dipantau dan analisis nonsupervised ANN menunjukkan bahawa sumber nitrat berasal dari bahagian hulu Sungai Pinang, Balik Pulau, manakala sumber nitrit, ammonia dan orto-fosfat mempunyai pengaruh besar di bahagian tengah sistem sungai. Sementara itu, jumlah tinggi pepejal terampai dan keperluan oksigen biologi tertumpu di hilir sungai.



Article Details

How to Cite
Using Non-supervised Artificial Neural Network for Determination of Anthropogenic Disturbance in a River System. (2017). Tropical Life Sciences Research, 28(2), 189–199. https://doi.org/10.21315/tlsr2017.28.2.14
Section
Original Article

References

Adams, V D (1990). Water and wastewater examination manual. Boca Raton, FL: CRC Press. American Public Health Association (APHA). (1999). Standard methods for the examination of water and wastewater (20th ed.). Washington, DC: American Public Health Association.

ASEAN Working Group on Coastal and Marine Environment (AWGCME). (2004). Regional partnership scheme capacity building for implementation of the ASEAN marine water quality criteria. In Marine Water Quality Training Workshop. Kuala Lumpur, 22 March – 2 April 2004: ASEAN Working Group on Coastal and Marine Environment, Australian Managing Contractor Australian Marine Science and Technology Limited.

Bellos D, Sawidis T and Tsekos I. (2004). Nutrient chemistry of River Pinios (Thessalia, Greece). Environment International 30(1): 105–115. https://doi.org/10.1016/S0160-4120(03)00153-3

Boyd C E and Tucker C S. (1992). Water quality and pond soil analyses for agriculture. Alabama: Alabama Agricultural Experiment Station, Aubum University, 482 pp.

Chan W S, Recknagel F, Cao H and Park H D. (2007) Elucidation and short-term forecasting of microcystin concentrations in Lake Suwa (Japan) by means of artifical neural networks and evolutionary algorithm. Water Research 41: 2247–2255.

Department of Environment Malaysia (DOE). (2008). Malaysia environmental quality report 2007. Publication section strategic communication division Department of Environment Malaysia (ed.). Department of Environment, Petaling Jaya, Malaysia.

Driche M, Abdessemed D and Nezzal G. (2008). Treatment of wastewater by natural lagoon for its reuse in irrigation. American Journal Engineering and Applied Sciences 1: 408–413. https://doi.org/10.3844/ajeassp.2008.408.413

Gao L, Li D J and Ding P X. (2008). Variation of nutrients in response to the highly dynamic suspended particulate matter in the Changjiang (Yangtze River) plume. Continental Shelf Research 28(17):2393–2403. https://doi.org/10.1016/j.csr.2008.05.004

Hishamudin M J, Abdul Halim H, Abdul Sahar S and Ahmad Shafizi M. (1987). Perusahaan kelapa sawit di Malaysia: Satu panduan. Kuala Lumpur, Malaysia: Adabi Sdn. Bhd Publisher, 58–61.

Johnson M P, Hartnett M, Collier L M and Costello M J. (2002). Identifying ‘hot spots’ of biological and anthropogenic activities in two Irish estuaries using means and frequencies. Hydrobiologia, v. 475/476, pp. 111–123. https://doi.org/10.1023/A:1020348821930

Kalteh A M, Hjorth P and Berndtsson R. (2008). Review of the self-organizing map (SOM) approach in water resources: Analysis, modelling and application. Environmental Modelling & Software 23(7): 835–845.

Khairun Y. (2004). Autrotrophy/heterotrophy in a planktonic communities in a tropical mangrove estuary. Unpublished PhD Thesis, Universiti Sains Malaysia.

Kohonen T. (1984). Self-organization and associative memory. Berlin: Springer. Mendiguchía C, Moreno C and García-Vargas M. (2007). Evaluation of natural and anthropogenic influences on the Guadalquivir River (Spain) by dissolved heavy metal and nutrients. Chemosphere 69:1509–1517. https://doi.org/10.1016/j.chemosphere.2007.05.082

Mirzoyan N, Parnes S, Singer A, Tal Y, Sowers K and Gross A. (2008). Quality of brackish aquaculture sludge and its suitability for anaerobic digestion and methane production in an upflow anaerobic sludge blanket (UASB) reactor. Aquaculture 279(1–4):35–41. https://doi.org/10.1016/j.aquaculture.2008.04.008

Ntengwe F W. (2006). Pollutant loads and water quality in streams of heavily populated and industrialised towns. Physics and Chemistry of the Earth. Parts A/B/C 31:832–839. https://doi.org/10.1016/j.pce.2006.08.025

Ramírez A, Rosas K G, Lugo A E and Ramos-González O M. 2014. Spatio-temporal variation in stream water chemistry in a tropical urban watershed. Ecology and Society 19(2): 45–56. https://doi.org/10.5751/ES-06481-190245

Recknagel F, Cao H, Kim B, Takamura N and Welk A. (2006) Artificial neural network approach for modelling and prediction of algal blooms. Ecology Informatics 1(2):133–151. https:doi.org/10.1016/j.ecoinf.2006.02.004

Sanderson P G and Taylor D M. (2003). Short-term water quality variability in two tropical estuaries, Central Sumatra. Estuaries 26(1): 156–165. https://doi.org/10.1007/BF02691702

Sanjay Kumar S, Unmesh Chandra P, Binod Bihari N and Dinabandhu B. (2006). Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of the Mahanadi river-estuarine system (India) – A case study. Environmental Geochemistry and Health 28: 317–330. https://doi.org/10.1007/s10653-005-9001-5

Strickland J D H and Parsons T R. (1972). A practical handbook of seawater analysis (2nd ed.). Ottawa, Kanada: Fisheries Research Board of Canada.

Thakur D P and Lin C K. (2003). Water quality and nutrient budget in closed Shrimp (Penaeus monodon) culture systems. Aquacultural Engineering 27(3):159–176. https://doi.org/10.1016/S0144-8609(02)00055-9

Uzoukwu B A, Ngoka C and Nnej N. (2004). Monitoring of seasonal variation in the water quality of Ubu River in Ekwusigo and Nnewi local government areas of Anambra State, Nigeria. Environmental Assessment 33(6): 886–898. https://doi.org/10.1007/s00267-004-3058-2

Vesanto J, Himberg J, Alhoniemi E and Parhankangas J. (2000). SOM Toolbox for Matlab 5 report, Helsinki University of Technology, Helsinki, Finland.

World Health Organization (WHO). (2008). Guidelines for drinking-water quality (3rd ed.). Incorporating the first and second addenda, Vol. 1. Recommendations. Geneva: World Health Organization.