Insecticide Residues on Poultry Manures: Field Efficacy Test on Selected Insecticides in Managing Musca Domestica Population

Main Article Content

Song-Quan Ong
Abdul Hafiz Ab Majid
Hamdan Ahmad


In this study, bifenthrin (Maxxthor SC, Ensystex Australasia Pty Ltd), imidacloprid (Prothor SC, Ensystex Australasia Pty Ltd) and fipronil (Regent®50SC, Bayer) were applied on the natural infest manures according to the manufacturer rate during a broiler breeding cycle. Solvent directimmersion extraction (SDIE) was used in detecting the target compound and later, quantification of the insecticide residues in field condition was investigated. The samples were prior cleaned up by solid-phase extraction (SPE) and analyzed by Ultra-Performance Liquid Chromatography (UPLC) - photodiode array (PDA) system. In the field trial, three insecticides were showed accumulation during the broiler breeding period and it is suggested that they acted as adulticides when applied on the poultry manures, this is supported by the significant correlation between the increment of insecticide residues to the reduction percentage of adult flies (<0.05). Fipronil showed significantly greater reduction on the adult fly compared to the other insecticides, in which the reduction rate compared to control population at the end of the broiler breeding period; fipronil, imidaclopril and bifenthrin reduced 51.51%, 28.30% and 30.84% of adult flies, respectively.


Dalam kajian ini, bifenthrin (Maxxthor SC, Ensystex Australasia Pty Ltd), imidacloprid (Prothor SC, Ensystex Australasia Pty Ltd) dan fipronil (Regent®50SC, Bayer) telah digunakan pada najis ayam yang dikerumuni oleh lalat Musca domestica secara semulajadi dalam satu penternakan ayam daging kitaran. Pengekstrakan rendaman pelarut (SDIE) telah digunakan dalam mengesan kompaun racun dan kemudian, kuantifikasi dan kualifikasi racun serangga pada keadaan bidang telah disiasat. Sampel telah dibersihkan dengan pengekstrakan fasa pepejal (SPE) dan dianalisis oleh Ultra-Performance Liquid Chromatography (UPLC) - sistem fotodiod pelbagai (PDA). Dalam kajian lapangan ayam, tiga racun serangga telah menunjukkan pengumpulan dalam tempoh penternakan ayam dan ia dicadangkan bahawa tiga racun serranga bertindak sebagai racun lalat dewasa walaupun digunakan pada najis ayam, ini telah disokongi dengan korelasi yang signifikan antara kenaikan sisa-sisa racun serangga kepada peratusan pengurangan daripada lalat dewasa (<0.05). Fipronil menunjukkan pengurangan lalat yang lebih tinggi berbanding dengan racun serangga yang lain, di mana kadar pengurangan berbanding untuk mengawal lalat pada akhir tempoh pembiakan ayam daging; fipronil, imidaclopril dan bifenthrin mengurangkan 51,51%, 28,30% dan 30,84% lalat dewasa, masing-masing.

Article Details

How to Cite
Song-Quan Ong, Abdul Hafiz Ab Majid, & Hamdan Ahmad. (2017). Insecticide Residues on Poultry Manures: Field Efficacy Test on Selected Insecticides in Managing Musca Domestica Population. Tropical Life Sciences Research, 28(2), 45–55.
Original Article


AOAC. (2007). AOAC Official Method 2007.01: Pesticide Residues in Foods by Acetonitrile Extraction 131 and Partitioning with Magnesium Sulfate. Retrieved from

ASTM. (2013). ASTM E1527-13: Standard Practice for Environmental Site Assessments: Phase I Environmental Site Assessment Process. , West Conshohocken, PA: ASTM International. Retrieved from

Baskaran S, Kookana R S and Naidu R. (1999). Degradation of bifenthrin, chlorpyrifos and imidacloprid in soil and bedding materials at termiticidal application rates. Pest Management Science 55: 1222–1228. 9063(199912);2-7

Bong L J and Jaal Z. (2009) Temporal changes in the abundance of Musca domestica Linn (Diptera: Muscidae) in poultry farms in Penang, Malaysia. Tropical Biomedicine 26(2): 140–148.

Bonmatin J M, Moineau I, Charvet R, Fleche C, Colin M E and Bengsch E R. (2003). A LC/ APCI-MS/MS method for analysis of imidacloprid in soils, in plants, and in pollens. Analytical Chemistry 75: 2027–2033.

California Department of Food and Agriculture (CDFA). (2011). Determination of Bensulide and Imidacloprid in Surface Water (EMON-SM-05-023). Sacramento, CA: Center for Analytical Chemistry Environmental Analysis.

California Department Pesticides Regulation (CDPR). (2014). DPR Progress Report. Available at:

Diclaro J W, Jeffrey C, Hertz R M, Welch P G K and Roberto M P. (2011). Integration of fly baits, traps, and cords to kill house flies (Diptera- Muscidae) and reduce annoyance. Journal of Entomological Science 47(1): 56–64. 8004-47.1.56

Environmental Protection Agency United States (EPA). (1992). Preparation of Soil Sampling Protocols: Sampling Techniques and Strategies (EPA/600/R-92/128). Las Vegas, NV: Environmental Protection Agency.

Environmental Protection Agency United States (EPA). (1999). Fate Assessment for the Synthetic Pyrethroids:, [Online]. Available at: sap/1999/february/pyreth. Environment Protection Agency United States (EPA). EPA Method 3630c: Silica Gel Cleanup. Available at: documents/3630c.pdf

Gilani S T S, Ageen M, Shah and Raza S. (2010). Chlorpyrifos degradation in soil and its effect on soil microorganisms. Journal of Animal and Plant Sciences 20(2): 99- 102.

Kaufman P E, Gerry A C, Rutz D A and Scott J G. (2006). Monitoring susceptibility of house flies (Musca domestica L.) in the United States to imidacloprid. Journal of Agricultural and Urban Entomology 23(4):195–200.

Khan H A A, Shad S A and Akram W. (2013) Combination of phagostimulant and visual lure as an effective tool in designing house fly toxic baits: A laboratory evaluation. PLoS ONE 8(9), e77225.

King C J. (1980). Seperation processes (2nd ed.) New York: McGraw-Hill, 756-763.

Mokry L E and Hoagland K D. (1989). Acute toxicities of five synthetic pyrethroid insecticides to Daphnia magna and Ceriodaphnadubia. Environmental Toxicology and Chemistry 9:1045–1051.

Nurita A T, Abu Hassan A, Nur Aida H and Norasmah Basar. (2008). Field evaluations of the granular fly bait, Quick Bayt® andthe paint-on fly bait, Agita® against synanthropic flies. Tropical Biomedicine 25(2): 126–133.

Obana H, Okihashi M, Akutsu K, Kitagawa Y and Hori S. (2003). Determination of neonicotinoidpesticide residues in vegetables and fruits with solid phase extraction and liquid chromatographymass spectrometry. Journal of Agricultural and Food Chemistry (51): 2501–2505.

Ong S Q, Ahmad H, Jaal Z and Che Rus A. (2015). Comparative effectiveness of insecticides for use against the house fly (Diptera: Muscidae): Determination of resistance levels on a Malaysian Poultry farm. Journal of Economics Entomology 109(1):352–359.

Page M, Haverty M I and Charles E R. (1988). Insecticide residues on pine bark: Influence of trees, sample volume and size on variability. Journal of Entomological Sciences 24(2): 180-185.

Peck G W, Ferguson J H, LePage T J, Hebert R V, O’Neal S D and Walsh D B. (2013). Evaluation of sunlight-exposed pyrethroid-treated netting for the control of face fly and housefly (Diptera: Muscidae). US Army Research Paper 259.

Saran R K and Kamble S T. (2008). Concentration dependent degradation of three termiticides in soil under laboratory conditions and their bioavailability to eastern subterranean termites (isoptera: Rhinotermitidae). Journal of Economic Entomology 101(4): 1373-1383.

Scudder H I. (1947). A new technique for sampling the density of housefly populations. Public Health Reports 62: 681-686.

Singh B K, Walker A, Morgan J A W and Wright D J. (2003). Effects of soil pH on the biodegradation of Chlorpyrifos and isolation of a Chlorpyrifos degrading bacterium. Applied and Environmental Microbiology 69(9): 5198-5206. AEM.69.9.5198-5206.2003

TOXNET (Toxicology Data Network). (2015) U.S. National Library of Medicine National Institutes of Health, Health & Human Services.

World Health Organization (WHO). (1986). Vector control series: The housefly training and information guide (Advance level). Lyngby, Denmark: Danish Pest Infection Laboratory.

Williams R E. (2010). Control of poultry pests. Purdue Extension E-3-W. Available at: