A Comparative Study on Physicochemical Characteristics of Raw Goat Milk Collected from Different Farms in Malaysia
Main Article Content
Abstract
This study was conducted to determine the physical and chemical composition of goat milk produced by eight local farms located in the central region of Malaysia. Farms 1 to 4 (F1-SC, F2-SP, F3-SP, F4-SBC) reared Saanen-type goats while farms 5 to 8 (F5-JK, F6-JPEC, F7-JTC, F8-JC), Jamnapari-type goats. The common feedstuffs used in all farms comprised of fresh or silage from Napier grass, feed pellets, and brans while two farms, F5-JK and F6-JPEC supplemented the feeds with soybean-based product. The total solid content, dry matter, and proximate composition of goat milk and feedstuffs from the different farms were determined and the results analysed using principal component analysis. Total solid content of goat milk from the Jamnapari crossbreed had the highest solid content ranging from 11.81% to 17.54% compared to milk from farms with Saanen and Saanen crossbreed (10.95% to 14.63%). Jamnapari-type goats from F5-JK, F6-JPEC, and F8-JC had significantly higher (p < 0.05) milk fat and protein contents (7.36%, 7.14%, and 6.59% fat; 5.08%, 6.19%, and 4.23% protein, respectively) than milk from other farms but, milk produced by Saanen-type goats from F4-SBC contained similar protein content (4.34%) to that from F8-JC. Total ash and carbohydrate contents in milk ranged between 0.67% to 0.86% and 3.26% to 4.71%, respectively, regardless of goat breed. Feeding soybean-based products appear to have a positive influence on milk fat and protein content in Jamnapari type goats.
Kajian ini dijalankan untuk menentukan komposisi fizikal dan kimia susu kambing yang dihasilkan oleh lapan ladang tempatan yang terletak di kawasan tengah Malaysia. Ladang 1 hingga 4 (F1-SC, F2-SP, F3-SP, F4-SBC) menternak kambing jenis Saanen sementara ladang 5 hingga 8 (F5-JK, F6-JPEC, F7-JTC, F8-JC) menternak kambing jenis Jamnapari. Bahan makanan biasa yang digunakan di semua ladang terdiri daripada rumput segar atau silaj dari rumput Napier, feed pellets, dan bran sementara dua ladang lagi, F5-JK dan F6-JPEC menambah makanan dengan produk berasaskan kacang soya. Kandungan pepejal, bahan kering dan komposisi susu kambing serta bahan makanan dari lading yang berbeza telah ditentukan dan keputusan dianalisis dengan menggunakan analisis komponen utama. Kandungan pepejal susu kambing dari kacukan Jamnapari mempunyai kandungan pepejal tertinggi iaitu 11.81% hingga 17.54% berbanding susu dari lading dengan Saanen dan kacukan Saanen (10.95% hingga 14.63%). Kambing jenis Jamnapari dari F5-JK, F6-JPEC, dan F8-JC mempunyai kandungan lemak dan protein susu (p < 0.05) yang lebih tinggi (7.36%, 7.14% dan 6.59% protein; 5.08%, 6.19% dan 4.23%) daripada susu dari ladang lain tetapi susu yang dihasilkan oleh kambing jenis Saanen dari F4-SBC mengandungi kandungan protein yang sama (4.34%) dengan F8-JC. Kandungan abu dan karbohidrat dalam susu adalah di antara 0.67% hingga 0.86% dan 3.26% hingga 4.71%, tanpa mengira baka kambing. Memberi makan produk berasaskan kacang soya dilihat mempunyai pengaruh positif terhadap kandungan lemak susu dan protein dalam kambing jenis Jamnapari.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Aghsaghali A M and Fathi H. (2012). Lactose in ruminants feeding: A review. Annals of Biological Research 3(1): 645–650.
Agnihotri M K and Prasad V S S. (1993). Biochemistry and processing of goat milk and milk products. Small Ruminant Research 12(2): 151–170. https://doi.org/10.1016/0921-4488(93)90080-2
Agnihotri M K and Rajkumar V. (2007). Effect of breed, parity and stage of lactation on milk composition of Western region goats of India. International Journal of Dairy Science 2(2): 172–177. http://doi.org/10.3923/ijds.2007.172.177
Almeida O C, Pires A V, Susin I, Gentil R S, Mendes C Q, Queiroz M A A, Ferreira E M and Eastridge M L. (2013). Milk fatty acids profile and arterial blood milk fat precursors concentration of dairy goats fed increasing doses of soybean oil. Small Ruminant Research 114(1): 152–160. https://doi.org/10.1016/j.smallrumres.2013.04.014
Alyaqoubi S, Abdullah A, Samudi M, Abdullah N, Addai Z R and Al-ghazali M. (2015). Physicochemical properties and antioxidant activity of milk samples collected from five goat breeds in Malaysia. Advance Journal of Food Science and Technology 7(4): 235–241. https://doi.org/10.19026/ajfst.7.1301
AOAC. (2005). Official methods of analysis, 18th ed. Gaithersburg: Official Methods of Analysis of AOAC International. Aplocina E and Spruzs J. (2012). Influence of different feedstuffs on quality of goat milk. Scientific Papers – Animal Science Series 57: 285–288.
Batovska D I, Todorova I T, Tsvetkova I V and Najdenski H M. (2009). Antibacterial study of the medium chain fatty acids and their 1-monoglycerides: Individual effects and synergistic relationships. Polish Journal of Microbiology 58(1): 43-47. https://www.ncbi.nlm.nih.gov/pubmed/19469285
Bauman D E and Currie W B. (1980). Partitioning of nutrients during pregnancy and lactation: A review of mechanisms involving homeostasis and homeorhesis. Journal of Dairy Science 63(9): 1514–1529. https://doi.org/10.3168/jds.S0022-0302(80)83111-0
Benincasa C, Lewis J, Sindona G and Tagarelli A. (2008). The use of multi element profiling to differentiate between cow and buffalo milk. Food Chemistry 110(1): 257–262. https://doi.org/10.1016/j.foodchem.2008.01.049
Bureau of Indian Standards (BIS). (1997). Indian Standard: Milk, Cream and Evaporated Milk – Determination of Total Solids Content (Reference Method). https://archive.org/details/gov.in.is.12333.1997 (accessed on 26 March 2014).
Cannas A. (2004). Feeding of lactating ewes. In G Pulina (ed.). Dairy sheep nutrition. Wallingford, United Kingdom: CAB International, 31–49.
Cannas A, Pes A, Mancuso R, Vodret B and Nudda A. (1998). Effect of dietary energy and protein concentration on the concentration of milk urea nitrogen in dairy ewes. Journal of Dairy Science 81(2): 499–508. https://doi.org/10.3168/jds.S0022-0302(98)75602-4
Chen B, Lewis M J and Grandison A S. (2014). Effect of seasonal variation on the composition and properties of raw milk destined for processing in the UK. Food Chemistry 158:216–223. http://dx.doi.org/10.1016/j.foodchem.2014.02.118
da Costa W K A, de Souza E L, Beltrão-Filho E M, Vasconcelos G K V, Santi-Gadelha T, de Almeida Gadelha C A, Franco O L, do Egypto Queiroga R D C R and Magnani M. (2014). Comparative protein composition analysis of goat milk produced by the Alpine and Saanen breeds in Northeastern Brazil and related antibacterial activities. PLoS ONE 9(3): e93361. http://dx.doi.org/10.1371/journal.pone.0093361
Department of Veterinary Services (DVS). (2016). Perangkaan ternakan. http://www.dvs.gov.my/dvs/resources/user_1/DVS%20pdf/Perangkaan%2020142015/2014_2015/bil_ternakan_201402015Muka_Surat_1-15.pdf (Accessed on 26 August 2016).
dos Santos I F, dos Santos A M P, Barbosa U A, Lima J S, dos Santos D C and Matos G D. (2013). Multivariate analysis of the mineral content of raw and cooked okra (Abelmoschus esculentus L.). Microchemical Journal 110: 439–443. https://doi.org/10.1016/j.microc.2013.05.008
Garcia V, Rovira S, Boutoial K and López M B. (2014). Improvements in goat milk quality:A review. Small Ruminant Research 121(1): 51–57. https://doi.org/10.1016/j.smallrumres.2013.12.034
Goetsch A L, Zeng S S and Gipson T A. (2011). Factors affecting goat milk production and quality. Small Ruminant Research 101(1-3): 55–63. https://doi.org/10.1016/j.smallrumres.2011.09.025
Gwayumba W, Christensen D A, McKinnon J J and Yu P. (2002). Dry matter intake, digestibility and milk yield by Friesian cows fed two Napier grass varieties. AsianAustralasian Journal of Animal Sciences 15(4): 516–521. https://www.ajas.info/upload/pdf/15-79.pdf
Haenlein G F W. (2004). Goat milk in human nutrition. Small Ruminant Research 51(2):155–163. https://doi.org/10.1016/j.smallrumres.2003.08.010
Hassan M R, Talukder M A I and Sultana S. (2010). Evaluation of the production characteristics of the Jamunapari goat and its adaptability to farm conditions in Bangladesh. Bangladesh Veterinarian 27(1): 26–35. https://doi.org/10.3329/bvet.v27i1.5912
Hornung B, Amtmann E and Sauer G. (1994). Lauric acid inhibits the maturation of vesicular stomatitis virus. Journal of General Virology 75: 353–361. https://doi.org/10.1099/0022-1317-75-2-353
ISO 8968-4. (2001). Milk – Determination of nitrogen content – Part 4: Determination of nonprotein-nitrogen content. Geneva: International Organization for Standardization.
Johny A K, Baskaran S A, Charles A S, Amalaradjou M A R, Darre M J, Khan M I, Hoagland T A, Schreiber D T, Donoghue A M, Donoghue D J and Venkitanarayanan K. (2009). Prophylactic supplementation of caprylic acid in feed reduces Salmonella enteritidis colonization in commercial broiler chicks. Journal of Food Protection72(4): 722–727. https://doi.org/10.4315/0362-028X-72.4.722
Kholif A E, Khattab H M, El-Shewy A A, Salem A Z M, Kholif A M, El-Sayed M M, Gado H M and Mariezcurrena M D. (2014). Nutrient digestibility, ruminal fermentation activities, serum parameters and milk production and composition of lactating goats fed diets containing rice straw treated with Pleurotus ostreatus. AsianAustralasian Journal of Animal Sciences 27(3): 357–364. https://doi.org/10.5713/ajas.2013.13405
Lai C Y, Fatimah A B, Mahyudin N A, Saari N and Zaman M Z. (2016). Physico-chemical and microbiological qualities of locally produced raw goat milk. International Food Research Journal 23(2): 739–750. http://www.ifrj.upm.edu.my/23(02)2016/(39).pdf
Mahmood A and Usman S. (2010). A comparative study on the physicochemical parameters of milk samples collected from buffalo, cow, goat and sheep of Gujrat, Pakistan. Pakistan Journal of Nutrition 9(12): 1192–1197. https://doi.org/10.3923/pjn.2010.1192.1197
Mayer H K and Fiechter G. (2012). Physicochemical characteristics of goat’s milk in Austriaseasonal variations and differences between six breeds. Dairy Science andTechnology 92(2): 167–177. https://doi.org/10.1007/s13594-011-0047-0
Mech A, Dhali A, Prakash B and Rajkhowa C. (2008). Variation in milk yield and milk composition during the entire lactation period in Mithun cows (Bos frontalis). Livestock Research for Rural Development 20(5). http://www.lrrd.org/lrrd20/5/mech20075.htm (accessed on 7 August 2017).
Molina-Alcaide E, Morales-García E Y, Martín-García A I, Salem H B, Nefzaoui A and Sanz Sampelayo M R. (2010). Effects of partial replacement of concentrate with feed blocks on nutrient utilization, microbial N flow, milk yield and composition in goats.Journal of Dairy Science 93(5): 2076–2087. https://doi.org/10.3168/jds.2009-2628
Morand-Fehr P, Bas P, Blanchart G, Daccord R, Giger-Reverdin S, Gihad E A, Hadjipanayiotou M, Mowlen A, Remeuf F and Sauvant D. (1991). Influence of feeding on goat milk composition and technological characteristics. In P Morand-Fehr (ed.). Goat nutrition. Pudoc, Wageningen: The Netherlands, 209–224.
Morand-Fehr P, Fedele V, Decandia M and Le Frileux Y. (2007). Influence of farming and feeding systems on composition and quality of goat and sheep milk. Small Ruminant Research 68(1–2): 20–34. https://doi.org/10.1016/j.smallrumres.2006.09.019
Oliveira A C, dos Santos V S, dos Santos D C, Carvalho R D S, Souza A S and Ferreira S L C. (2014). Determination of the mineral composition of Caigua (Cyclanthera pedata) and evaluation using multivariate analysis. Food Chemistry 152: 619–623. https://doi.org/10.1016/j.foodchem.2013.12.022
Pambu R G. (2011). Effects of goat phenotype score on milk characteristics and blood parameters of indigenous and improved dairy goats in South Africa. PhD diss., University of Pretoria.
Park Y W, Juárez M, Ramos M and Haenlein G F W. (2007). Physico-chemical characteristics of goat and sheep milk. Small Ruminant Research 68(1–2): 88–113. https://doi.org/10.1016/j.smallrumres.2006.09.013
Park Y W. (2010). Improving goat milk. In M. Griffiths (ed.). Improving the safety and quality of milk, Volume 2: Improving quality in milk products. Cambridge, England: Woodhead Publishing, 304-346. https://doi.org/10.1533/9781845699437.3.304
Ramadhan B G, Suprayogi T H and Sustiyah A. (2013). The effect of balanced forage and concentrate on feed to milk production and fat content in lactating Ettawa grade goats. Animal Agriculture Journal 2(1): 353–361.
Razzaghi A, Valizadeh R, Naserian A A, Mesgaran M D and Rashidi L. (2015). Effects of sucrose and sunflower oil addition to diet of Saanen dairy goats on performance and milk fatty acid profile. Livestock Science 173: 14–23. https://doi.org/10.1016/j.livsci.2014.12.002
Rego O A, Regalo S M M, Rosa H J D, Alves S P, Borba A E S, Bessa R J B, Cabrita A R J and Fonseca A J M. (2008). Effects of grass silage and soybean meal supplementation on milk production and milk fatty acid profiles of grazing dairy cows. Journal of Dairy Science 91(7): 2736–2743. https://doi.org/10.3168/jds.2007-0786
Sanz Ceballos L, Morales E R, Adarve G T, Castro J D, Martinez L P and Sanz Sampelayo M R. (2009). Composition of goat and cow milk produced under similar conditions and analyzed by identical methodology. Journal of Food Composition and Analysis 22(4): 322–329. https://doi.org/10.1016/j.jfca.2008.10.020
Sanz Sampelayo M R, Perez M L, Extremera F G, Boza J J and Boza J. (1999). Use of different dietary protein sources for lactating goats: Milk production and composition as functions of protein degradability and amino acid composition. Journal of Dairy Science 82(3): 555–565. https://doi.org/10.3168/jds.S0022-0302(99)75267-7
Sanz Sampelayo M R, Chilliard Y, Schmidely P and Boza J. (2007). Influence of type of diet on the fat constituents of goat and sheep milk. Small Ruminant Research 68(1–2): 42–63. https://doi.org/10.1016/j.smallrumres.2006.09.017
Shin E C, Craft B D, Pegg R B, Phillips R D and Eitenmiller R R. (2010). Chemometric approach to fatty acid profiles in runner-type peanut cultivars by principal component analysis (PCA). Food Chemistry 119(3): 1262–1270. https://doi.org/10.1016/j.foodchem.2009.07.058
Shingfield K J, Chilliard Y, Toivonen V, Kairenius P and Givens D I. (2008). Trans fatty acids and bioactive lipids in ruminant milk. In Z Bösze (ed.). Bioactive Components of Milk. New York: Springer, 3–65.
Silanikove N, Leitner G, Merin U and Prosser C G. (2010). Recent advances in exploiting goat’s milk: Quality, safety and production aspects. Small Ruminant Research 89(2-3): 110–124. https://doi.org/10.1016/j.smallrumres.2009.12.033
Singh G, Sharma R B, Kumar A and Chauhan A. (2014). Effect of stages of lactation on goat milk composition under field and farm rearing condition. Advances in Animal and Veterinary Sciences 2(5): 287–291. https://doi.org/10.14737/journal.aavs/2014/2.5.287.291
Singh M, Yadav P, Garg V K, Sharma A, Singh B and Sharma H. (2015). Quantification of minerals and trace elements in raw caprine milk using flame atomic absorption spectrophotometry and flame photometry. Journal of Food Science and Technology 52(8): 5299–5304. https://doi.org/10.1007/s13197-014-1538-9
Sithambaram S and Nizam Q N H. (2014). Country Reports 2013/14 of the Asian Australasian Dairy Goat Network. Malaysia: Institute of Tropical Agriculture Universiti Putra Malaysia, 57–65.
Steinshamn H, Inglingstad R A, Ekeberg D, Mølmann J and Jørgensen M. (2014). Effect of forage type and season on Norwegian dairy goat milk production and quality. Small Ruminant Research 122(1-3): 18–30. https://doi.org/10.1016/j.smallrumres.2014.07.013
Sung Y Y, Wu T I and Wang P H. (1999). Evaluation of milk quality of Alpine, Nubian, Saanen and Toggenburg breeds in Taiwan. Small Ruminant Research 33(1): 17–23. https://doi.org/10.1016/S0921-4488(98)00201-6
Thormar H, Isaacs C E, Brown H R, Barshatzky M R and Pessolano T. (1987). Inactivation of enveloped viruses and killing of cells by fatty acids and monoglycerides. Antimicrobial Agents and Chemotherapy 31(1): 27–31. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC174645/
Undersander D, Mertens D R and Thiex N. (1993). Forage analyses procedures. http://www.foragetesting.org/files/LaboratoryProcedures.pdf (accessed on 17 May 2014).
Vasta V, Nudda A, Cannas A, Lanza M and Priolo A. (2008). Alternative feed resources and their effects on the quality of meat and milk from small ruminants. Animal Feed Science and Technology. 147(1–3): 223–246. https://doi.org/10.1016/j.anifeedsci.2007.09.020
Voutsinas L, Pappas C and Katsiari M. (1990). The composition of Alpine goats’ milk during lactation in Greece. Journal of Dairy Research 57(1): 41–51. https://doi.org/10.1017/S0022029900026595
Zain S M, Behkami S, Bakirdere S and Koki I B. (2016). Milk authentication and discrimination via metal content clustering – A case of comparing milk from Malaysia and selected countries of the world. Food Control 66: 306–314. http://doi.org/10.1016/j.foodcont.2016.02.015
Žan M, Stibilj V and Rogelj I. (2006). Milk fatty acid composition of goats grazing on alpine pasture. Small Ruminant Research 64(1–2): 45–52. https://doi.org/10.1016/j.smallrumres.2005.03.015
Zenou A and Miron J. (2005). Milking performance of dairy ewes fed pellets containing soy hulls as starchy grain substitute. Small Ruminant Research 57(2–3): 187–192. https://doi.org/10.1016/j.smallrumres.2004.07.004
Zervas G, Fegeros K, Koytsotolis K, Goulas C and Mantzios A. (1998). Soy hulls as a replacement for maize in lactating dairy ewe diets with or without dietary fat supplements. Animal Feed Science and Technology 76(1–2): 65–75. https://doi.org/10.1016/S0377-8401(98)00209-0