The Effect of Oxidative Stress Towards the Expression of Thiamine Biosynthesis Genes (THIC and THI1/THI4) in Oil Palm (Elaeis guineensis)

Main Article Content

Zainor Hafisah Che Idris
Aisamuddin Ardi Zainal Abidin
Atiqah Subki
Zetty Norhana Balia Yusof

Abstract

Thiamine is known to be an important compound in human diet and it is a cofactor required for vital metabolic processes such as acetyl-CoA biosynthesis, amino acid biosynthesis, Krebs and Calvin cycle. Besides that, thiamine has been shown to be involved in plant protection against stress. In this study, the level of expression of THIC and THI1/THI4, the genes for the first two enzymes in the thiamine biosynthesis pathway were observed when oil palm (Elaeis guineensis) was subjected to oxidative stress. Primers were designed based on the consensus sequence of thiamine biosynthesis genes obtained from Arabidopsis thaliana, Zea mays, Oryza sativa, and Alnus glutinosa. Oxidative stress were induced with various concentrations of paraquat and samplings were done at various time points post-stress induction. The expression of THIC and THI1/THI4 genes were observed via RT-PCR and qPCR analysis. The expression of THIC was increased 2-fold, while THI1/THI4 gene transcript was increased 4-fold upon induction of oxidative stress. These findings showed that oil palm responded to oxidative stress by over-expressing the genes involved in thiamine biosynthesis. These findings support the suggestion that thiamine may play an important role in plant protection against stress.


 


Tiamina dikenali sebagai sebatian penting dalam diet manusia dan ia adalah kofaktor yang diperlukan untuk proses metabolisme yang penting seperti biosintesis asetil- CoA, biosintesis asid amino, dan juga kitaran Krebs dan Calvin. Selain itu, tiamina juga telah terbukti terlibat dalam perlindungan tumbuhan terhadap tekanan. Dalam kajian ini, tahap ekspresi transkrip gen THIC dan THI1/THI4, dua enzim pertama dalam tapakjalan biosintesis tiamina telah dianalisa apabila anak pokok kelapa sawit didedahkan kepada tekanan oksidatif. Primer direka berdasarkan perbandingan gen biosintesis tiamina daripada Arabidopsis thaliana, Zea mays, Oryza sativa dan Alnus glutinosa. Tekanan oksidatif telah diberikan melalui parakuat dengan pelbagai kepekatan dan sampel telah diambil di beberapa peringkat masa selepas induksi tekanan. Ekspresi transkrip gen THICdan THI1/THI4 telah dianalisa melalui RT-PCR dan qPCR. Ekspresi transkrip gen THIC telah meningkat sebanyak dua gandaan, manakala ekspresi transkrip gen THI1/THI4 telah meningkat sebanyak empat gandaan selepas induksi tekanan oksidatif diberikan. Penemuan ini menunjukkan bahawa kelapa sawit bertindak balas kepada tekanan oksidatif dengan lebih-meningkatkan ekspresi gen-gen yang terlibat dalam biosintesis thiamine. Penemuan ini menyokong cadangan bahawa tiamina boleh memainkan peranan penting dalam perlindungan tumbuhan terhadap tekanan.

Article Details

How to Cite
The Effect of Oxidative Stress Towards the Expression of Thiamine Biosynthesis Genes (THIC and THI1/THI4) in Oil Palm (Elaeis guineensis). (2018). Tropical Life Sciences Research, 29(1), 71–85. https://doi.org/10.21315/tlsr2018.29.1.5
Section
Original Article

References

Ajjawi I, Rodriguez Milla M A, Cushman J and Shintani D K. (2007). Thiamin pyrophosphokinase is required for thiamin cofactor activation in Arabidopsis. Plant Molecular Biology 65(1–2): 151–162.

Bettendorff L. (2007). At the crossroad of thiamine degradation and biosynthesis. Nature Chemical Biology 3(8): 454–455.

Balia Yusof Z N, Borhan F P, Mohamad F A and Rusli M H. (2015). The effect of Ganoderma boninense infection on the expressions of thiamine (vitamin B1 ) biosynthesis genes in oil palm. Journal of Oil Palm Research 27(1): 12–18.

Chatterjee A, Jurgenson C T, Schroeder F C, Ealick S E and Begley T P. (2007). Biosynthesis of thiamin thiazole in eukaryotes: conversion of NAD to an advanced intermediate. Journal of the American Chemical Society 129(10): 2914–2922.

Chatterjee A, Abeydeera N D, Bale S, Pai P J, Dorrestein P C and Russell D H. (2011). Saccharomyces cereviseaTHI4p is a suicide thiamine thiazole synthase. Nature 478(7370): 542–546.

Croft M T, Warren M J and Smith A G. (2006). Algae need their vitamins, Eukaryot Cell 5(8): 1175–1183.

Croft M T, Moulin M, Webb M E and Smith A G. (2007). Thiamine biosynthesis in algae is regulated by riboswitches, Proceeding of the Nationall Academy of Sciences USA 104(52): 20770–20775.

Ferreira S, Hjerno K, Larsen M, Wingsle G, Larsen P, Fey S, Roepstorff P and Salomé Pais M. (2006). Proteome profiling of populous Euphratica Oliv. upon heat stress. Annals of Botany (London) 98(2): 361–377.

Kumar S A and Venkateswarlu B. (Eds.) (2011). Abiotic stress response in plants. physiological, biochemical and genetic perspectives. London: Intech. https://doi.org/10.5772/1762

Li Z and Trick H N. (2005). Rapid method for high quality RNA isolation from seed endosperm containing high levels of starch. Biotechniques 38(6): 874–876.

Machado C R, Praekelt U M, Oliveira R C, De Barbosa A C C, Byrne K L, Meacock P A and Le L. (1997). Dual role for the yeast thi4 gene in thiamine biosynthesis and DNA damage tolerance. Journal of Molecular Biology 273(1): 114–121.

Page B and Lord S. (2006). The oil palm industry’ s approach to the use of pesticides in Papua New Guinea. Planter 82(958): 13–21.

Pfaffl M W. (2004). Quantification strategies in real-time PCR. AZ of Quantitative PCR, 1: 89–113. Pourcel L, Moulin M and Fitzpatrick T B. (2013). Examining strategies to facilitate vitamin B1 biofortification of plants by genetic engineering. Frontiers in Plant Science 4: 1–8.

Rapala-Kozik M, Wolak N, Kujda M and Banas A K. (2012). The upregulation of thiamine (vitamin B1 ) biosynthesis in Arabidopsis thaliana seedlings under salt and osmotic stress conditions is mediated by abscisic acid at the early stages of this stress response. BioMed Central Plant Biology 12(2): 1. https://doi.org/10.1186/1471-2229-12-2

Ribeiro D T, Farias L P, De Almeida J D, Kashiwabara P M, Ribeiro A F, Silva-Filho M C, Menck C F M and Van Sluys M A (2005). Functional characterization of the thi1 promoter region from Arabidopsis thaliana. Journal of Experimental Botany 56(417): 1797–1804.

Sime Darby. (2014). Annual report 2014. http://www.simedarby.com/sites/default/files/annualreportpdf/sime_darby_ar2014.pdf

Tunc-Ozdemir M, Miller G, Song L, Kim J, Sodek A, Koussevitsky S, Misra A N, Mittler R and Shintani D. (2009). Thiamin confers enhanced tolerance to oxidative stress in Arabidopsis. Plant Physiology 151(1): 421–432.

Wang H, Chua N H and Wang X J. (2006). Prediction of trans-antisense transcripts in Arabidopsis thaliana. Genome Biology 7: R92. https://doi.org/10.1186/gb-2006-7-10-r92