Neuronal Cell Death and Mice (Mus Musculus) Behaviour after Induced by Bee Venom

Main Article Content

Rian Oktiansyah
Berry Juliandi
Kanthi Arum Widayati
Vetnizah Juniantito

Abstract

Neuronal cell death can occur in a tissue or organ, including the brain, which affects memory. The objectives of this study were to determine the dose of bee venom that causes neuronal death and analyse the alteration of mouse behaviour, focusing in particular on spatial memory. Fifteen male mice of Deutsche Denken Yoken (DDY) strain were divided into control and treatment groups. Bee venom was injected six times for two weeks intraperitoneally with 1.88 mg/kg, 3.76 mg/kg, 5.6 mg/kg, and 7.48 mg/kg doses of venom. Brain histology was studied using haematoxylin-eosin stained paraffin embedded 5 ?m coronal sections. A Y maze test was used to assay behaviour. Parameters observed were the number of dead neurons and the percentage of mice with altered behaviour. ANOVA showed that the effects of bee venom were significantly different in the case of the neuronal death parameter but were not significantly different in the case of the mice behaviour parameter. Duncan’s Multiple Range Test (DMRT) demonstrated that P4 (7.48 mg/kg) gave the highest effect of bee venom to promote neuronal death.

Article Details

How to Cite
Neuronal Cell Death and Mice (Mus Musculus) Behaviour after Induced by Bee Venom. (2018). Tropical Life Sciences Research, 29(2), 1–11. https://doi.org/10.21315/tlsr2018.29.2.1
Section
Original Article

References

Abdu F and Alahmari A. (2013). Anti-inflammatory effect of melittin on mice jejunum. Global Advanced Research Journal of Environmental Science and Toxicology 2(3): 68–76.

Ali M A A M. (2012). Studies on bee venom and its medical uses. International Journal of Advancements in Research & Technology 1(1): 1–15.

Banikowski A K. (1999). Strategies to enhance memory based on brain-research. Educational Psychology 32(2): 1–22.

Bellik Y. (2015). Bee venom: its potential use in alternative medicine. Anti-Infective Agents 13(1): 1–14. https://doi.org/10.2174/2211352513666150318234624

Bogdanov S. (2015). Bee Venom: Composition, Health, Medicine: A Review. Bee Product Science 1(1): 1–20.

Clark P J, Brzezinska W J, Thomas M W, Rhyzenko N A, Toshkov S A and Rhodes J S. (2008). Intact neurogenesis is required for benefits of exercise on spatial memory but not motor performance or contextual fear conditioning in c57bl/6j mice. Neuroscience 155(1): 1048–1058. https://doi.org/10.1016/j.neuroscience.2008.06.051

Conrad C D and Roy E J. (1993). Selective loss of hippocampal granule cell following adrenalectomy: implications for spatial memory. Journal of Neuroscience 13(6): 2582–2590.

Cudrici C, Niculescu T, Niculescu F, Shin M L and Rus H. (2006). Oligodendrocyte cell death in pathogenesis of multiple sclerosis: protection of oligodendrocytes from apoptosis by complement. Journal of Rehabilitation Research & Development 43(1): 123–132. https://doi.org/10.1682/JRRD.2004.08.0111

Dantzer R, O’Connor J C, Freund G G, Johnson R W and Kelley K W. (2008). From inflammation to sickness and depression: when the immune system subjugates the brain. Nature Reviews Neuroscience 9(1): 46–56. https://doi.org/10.1038/nrn2297

Dilger R N and Johnson R W. (2008). Aging, microglial cell priming, and the discordant central inflammatory response to signals from the peripheral immune system. Journal of Leukocyte Biology 84(1): 932–939. https://doi.org/10.1189/jlb.0208108

Eichenbaum H, Dudchenko P, Wood E, Shapiro M and Tanila H. (1999). The hipokampus, memory, and place cells: Is it spatial memory or a memory space? Neuron 23: 209–226. https://doi.org/10.1016/S0896-6273(00)80773-4

Elhakim Y M A, Khalil S R, Awad A and Ayadhi L Y A. (2014). Combined cytogenotoxic effect of bee venom and bleomycin on rat lymphocytes: An in vitro study. BioMed Research International 1(1): 1–9. https://doi.org/10.1155/2014/173903

Erwin, Pangestiningsih T W and Widyarini S. (2013). Kepadatan sel hipokampus insulin imunoreaktif pada formasi hipokampus mencit yang diinduksi berulang dengan streptozotosin. Jurnal Veteriner 14(2): 126–131.

Eze O B L, Nwodo O F C and Ogugua V N. 2016. Therapeutic effect of honey bee venom. Journal of Pharmaceutical, Chemical, and Biological Sciences 4(1): 48–53.

Gajski G and Garaj-Vrhovac V. (2011). Bee venom induced cytogenetic damage and decreased cell viability in human white blood cells after treatment in vitro: A multibiomarker approach. Environmental Toxicology and Pharmacology 32(1): 201– 211. https://doi.org/10.1016/j.etap.2011.05.004

Hedrych-Ozimina A, Behrendt K, Hao Z, Pofahl R, Ussath D, Knaup R, Krieg T and Haase I. (2011). Enhanced contact allergen- and UVB-induced keratinocyte apoptosis in the absence of CD95/Fas/Apo-1. Cell Death and Differentiation 18(1): 155–163. https://doi.org/10.1038/cdd.2010.83

Jeong J K, Moon M H, Bae B C, Lee Y J, Seol J W and Park S Y. (2011). Bee venom phospholipase A2 prevents prion peptide induced-cell death in neuronal cells. International Journal of Molecular Medicine 28(1): 867–873.

Juliandi B, Tanemura K, Igarashi K, Tominaga T, Furukawa Y, Otsuka M, Moriyama N, Ikegami D, Abematsu M, Sanosaka T et al. (2015). Reduced adult hippocampal neurogenesis and cognitive impairments following prenatal treatment of the antiepileptic drug valproic acid. Stem Cell Reports 5(1): 1–14.

Krell R. (1996). Value-added products from beekeeping. FAO Agricultural Services Bulletin 124(1): 1–13.

Kwon H K, Kim G C, Hwang J S, Kim Y, Chae C S, Nam J H, Jun C D, Rudra D, Surh C D and Im S H. (2016). Transcription factor NFAT1 controls allergic contact hypersensitivity through regulation of activation induced cell death program. Scientific Reports 1(1): 1–15. https://doi.org/10.1038/srep19453

Kwon Y B, Lee J D, Lee H J, Han H J, Mar W C, Kang S K, Beitz A J and Lee J H. (2001). Bee venom injection into an acupuncture point reduces arthritis associated edema and nociceptive responses. Pain 90(1): 271–280. https://doi.org/10.1016/S0304-3959(00)00412-7

Langley P. (2012). Intelligent behaviour in humans and machines. Advances in Cognitive Systems 2(1): 3–12.

Lee G and Bae H. (2016). Bee venom phospholipase A2: Yesterday’s enemy becomes today’s friend. Toxins 8(48): 1–12. https://doi.org/10.3390/toxins8020048

Maier S F and Linda R. (2012). Consequences of the inflamed brain. Dana Alliance 1(1): 1–4.

Majno G and Joris I. (1995). Apoptosis, oncosis, and necrosis an overview of cell death. American Journal of Pathology 146(1): 3–15.

Matsuda H. (2007). Role of neuroimaging in Alzheimer’s disease, with emphasis on brain perfusion. The Journal of Nuclear Medicine 48(8): 1289–1300. https://doi.org/10.2967/jnumed.106.037218

Mourre C, Fournier C and Soumireu-Mourant B. (1997). Apamin, a blocker of the calciumactivated potassium channel, induces neurodegeneration of purkinje cells exclusively. Brain Research 778(1): 405–408. https://doi.org/10.1016/S0006-8993(97)01165-7

Oller-Salvia B, Teixido M and Giralt E. (2013). From venom to BBB shuttles: Synthesis and blood-brain barrier transport assessment of apamin and a nontoxic analog. Biopolymers 100(6): 675–686. https://doi.org/10.1002/bip.22257

Onaolapo O J, Onaolapoh A Y, Mosaku T J, Akanji O O and Abiodun O R. (2012). Elevated plus maze and Y-maze behavioural effects of subchronic, oral low dose monosodium glutamate in swiss albino mice. IOSR Journal of Pharmacy and Biological Sciences (IOSR-JPBS) 3(4): 21–27.

Ovcharov R, Shkenderov S and Mihailova S. (1976). Anti-inflammation effects of apamine. Toxicon 14(1): 441–447. https://doi.org/10.1016/0041-0101(76)90060-X

Ownby C L, Powell J R, Jiang M S and Fletcher J E. (1997). Melittin and phospholipase A2 from bee (Apis mellifera) venom cause necrosis of murine skeletal in vivo. Toxicon 35(1): 67–80.

Palombella V J and Vilcek J. (1989). Mitogenic and cytotoxic actions of tumor necrosis factor in BALB/c 3T3 cells. The Journal of Biological Chemistry 264(30): 18128–18136.

Raghuraman H and Chattopadhyay A. (2006). Melittin: a membrane-active peptide with diverse functions. Bioscience Report 27(1): 189–223.

Ransohoff R M and Engelhardt B. (2012). The anatomical and cellular basis of immune surveillance in the central nervous system. Nature Reviews Immunology 12(9): 623–635. https://doi.org/10.1038/nri3265

Saikumar P and Venkatachalam M A. (2009). Apoptosis and cell death. Molecular Pathology Library 14(1): 29–41. https://doi.org/10.1007/978-0-387-89626-7_4

Silva A J, Giese K P, Fedorov N B, Frankland P W and Kogan J H. (1998). Molecular, cellular, and neuroanatomical substrates of place learning. Neurobiology of Learning and Memory 70(1): 44–61. https://doi.org/10.1006/nlme.1998.3837

Takeshita Y and Ransohoff R M. (2012). Inflammatory cell trafficking across the blood-brain barrier (BBB): Chemokine regulation and in vitro models. Immunological Reviews 248(1): 228–239. https://doi.org/10.1111/j.1600-065X.2012.01127.x

Truskinovsky A M, Dick J D and Hutchins G M. (2001). Fatal infection after a bee sting. Clinical Infectious Diseases 32(2): 36–38. https://doi.org/10.1086/318451

Wolfe J L. (1969). Exploratory activity and new object response of wild and laboratory house mice. Communications in Behaviour Biology 4(1): 13–16.

Worlitzer M M A, Bunk E C, Hemmer K and Schwamborn J C. (2012). Anti-inflammatory treatment induced regenerative oligodendrogenesis in parkinsonian mice. Current Stem Cell Research and Therapy 3(1): 33. https://doi.org/10.1186/scrt124

Yang E J, Jiang J H, Lee S M, Yang S C, Hwang H S, Lee M S and Choi S M. (2010). Bee venom attenuates neuroinflammatory events and extends survival in amyotrophic lateral sclerosis models. Journal of Neuroinflammation 7(1): 69. https://doi.org/10.1186/1742-2094-7-69