Identification of Cultivable Bacteria from Tropical Marine Sponges and Their Biotechnological Potentials

Main Article Content

Tan Suet May Amelia
Al-Ashraf Abdullah Amirul
Jasnizat Saidin
Kesaven Bhubalan

Abstract

Marine sponges are acknowledged as bacterial hotspots in the oceanic biome. Aquatic bacteria are being investigated comprehensively for bioactive complexes and secondary metabolites. Cultivable bacteria associated with different species of sea sponges in South China Sea waters adjacent to Bidong Island, Terengganu were identified. Molecular identification was accomplished using 16S rRNA gene cloning and sequencing. Fourteen bacterial species were identified and their phylogenetic relationships were analysed by constructing a neighbour-joining tree with Molecular Evolutionary Genetics Analysis 6. The identified species encompassed four bacterial classes that were Firmicutes, Actinobacteria, Alphaproteobacteria and Gammaproteobacteria known to have been associated with sponges. The potential biotechnological applications of the identified bacteria were compared and reviewed based on relevant past studies. The biotechnological functions of the 14 cultivable isolates have been previously reported, hence reinforcing that bacteria associated with sponges are an abundant resource of scientifically essential compounds. Resilience of psychrotolerant bacteria, Psychrobacter celer, in warm tropical waters holds notable prospects for future research.


 


Span laut diakui sebagai titik panas bakteria di bioma samudera. Bakteria akuatik sedang diselidiki secara komprehensif untuk kompleks bioaktif dan metabolit sekunder. Bakteria yang boleh dikulturkan dikenal pasti dari spesies span laut berlainan di perairan Laut China Selatan berdekatan Pulau Bidong, Terengganu. Pengenalpastian molekul dicapai dengan pengklonan dan penjujukan gen 16S rRNA. Empat belas spesies bakteria telah dikenalpasti dan hubungan filogenetik mereka telah dianalisis dengan membina pokok neighbour-joining menggunakan Molecular Evolutionary Genetics Analysis 6. Spesies yang dikenal pasti merangkumi empat kelas bakteria yang pernah dikaitkan dengan span, iaitu kelas Firmikuta, Aktinobakteria, Alfaproteobakteria dan Gammaproteobakteria. Aplikasi bioteknologi bakteria yang dikenal pasti telah dibandingkan dan diulaskan berdasarkan kajian lepas yang berkaitan. Fungsi bioteknologi 14 isolat kultivar telah dilaporkan sebelum ini, justeru meyakinkan bahawa span adalah sumber kaya dengan bahan-bahan yang penting dari segi saintifik. Kewujudan bakteria psikotoleran Psychrobacter celer di perairan tropika yang hangat memiliki prospek ketara untuk penyelidikan masa depan.

Article Details

How to Cite
Identification of Cultivable Bacteria from Tropical Marine Sponges and Their Biotechnological Potentials. (2018). Tropical Life Sciences Research, 29(2), 187–199. https://doi.org/10.21315/tlsr2018.29.2.13
Section
Short Communication

References

Altug G, Cardak M, Ciftci P S and Gurun S. (2013). First records and microgeographical variations of culturable heterotrophic bacteria in an inner sea (the Sea of Marmara) between the Mediterranean and the Black Sea, Turkey. Turkish Journal of Biology 37(2):184–190. https://doi.org/10.3906/biy-1112-21

Amann R I, Ludwig W and Schleifer K H. (1995). Phylogenetic identification and in-situ detection of individual microbial cells without cultivation. Microbiological Reviews 59(1):143–169.

Babu M M G, Sridhar J and Gunasekaran P. (2011). Global transcriptome analysis of Bacillus cereus ATCC 14579 in response to silver nitrate stress. Journal of Nanobiotechnology 9: 49. https://doi.org/10.1186/1477-3155-9-49

Binks P R, French C E, Nicklin S and Bruce N C. (1996). Degradation of pentaerythritol tetranitrate by Enterobacter cloacae PB2. Applied and Environmental Microbiology 62(4): 1214–1219.

Brammavidhya S and Usharani G. (2013). Bioactive potential of sponge associated Bacillus cereus SBS02 isolated from Hyattela cribriformis. International Journal of Research in Environmental Science and Technology 3(2): 61–64.

Cerritos R, Eguiarte L E, Avitia M, Siefert J, Travisano M, Verdugo A R and Souza V. (2010). Diversity of culturable thermo-resistant aquatic bacteria along an environmental gradient in Cuatro Cienegas, Coahuila, Mexico. Antonie Van Leeuwenhoek 99(2): 303–318. https://doi.org/10.1007/s10482-010-9490-9

Chen W M, Tang Y Q, Kazuhiro M and Wu X L. (2012). Distribution of culturable endophytic bacteria in aquatic plants and their potential for bioremediation in polluted waters. Aquatic Biology 15(2): 99–110. https://doi.org/10.3354/ab00422

Cho C W and Park S H. (2009). Comparative analysis of the community of culturable bacteria associated with sponges, Spirastrella abata and Spirastrella panis by 16S rDNA-RFLP. The Korean Journal of Microbiology 45(2): 155–162.

Federal Register. (1982). Appendix E: Certified host-vector systems. Federal Register 47(77): 17197.

Fedosov Y V, Mikhailov V V, Zhigalina I I, Ivanova E P, Kozhemyako V B, Onoprienko N B, Rasskazov V A and Elyakov G B. (1991). Doklady Akademii Nauk SSSR, 320(2): 485–487.

Felsenstein J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39(4): 783–791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x

Georgieva O. (2003). Enterobacter cloacae bacterium as a growth regulator in greenhouse cucumbers (Cucumis sativus L.). Cucurbit Genetics Cooperative Report 26(2): 4–6.

Gopi M, Kumaran S, Kumar T T A, Deivasigamani B, Alagappan K and Prasad S G. (2012). Antibacterial potential of sponge endosymbiont marine Enterobacter sp at Kavaratti Island, Lakshadweep archipelago. Asian Pacific Journal of Tropical Medicine 5(2): 142–146. https://doi.org/10.1016/S1995-7645(12)60013-3

Gram H C. (1884). Uber die isolierte farbung der schizomyceten in schnitt-und trockenpraparaten. Fortschritte Der Medizin 2: 185–189.

Han X, Lin B, Ru G, Zhang Z, Liu Y and Hu Z. (2014). Gene cloning and characterization of an ?- amylase from Alteromonas macleodii B7 for enteromorpha polysaccharide degradation. Journal of Microbiology and Biotechnology 24(2): 254–263. https://doi.org/10.4014/jmb.1304.04036

Irshad A, Ahmad I and Kim S B. (2013). Isolation, characterization and antimicrobial activity of halophilic bacteria in foreshore soils. African Journal of Microbiology Research 7(3): 164–173. https://doi.org/10.5897/AJMR12.1004

Ivars-Martinez E, Dauria G, Rodriguez-Valera F, Sanchez-Porro C, Ventosa A, Joint I and Muhling M. (2008). Biogeography of the ubiquitous marine bacterium Alteromonas macleodii determined by multilocus sequence analysis. Molecular Ecology 17(18): 4092–4106. https://doi.org/10.1111/j.1365-294X.2008.03883.x

Iyer R and Iken B. (2013). Identification of water-borne bacterial isolates for potential remediation of organophosphate contamination. Advances in Biological Chemistry 3(1): 146–152. https://doi.org/10.4236/abc.2013.31018

Jimenez E, Sanchez B, Farina A, Margolles A and Rodriguez J M. (2014). Characterization of the bile and gall bladder microbiota of healthy pigs. Microbiology Open 3(6): 937–949. https://doi.org/10.1002/mbo3.218

Kim K, Hwang S, Saravanan V S and Sa T. (2012). Effect of Brevibacterium iodinum RS16 and Methylobacterium oryzae CBMB20 inoculation on seed germination and early growth of maize and sorghum-sudangrass hybrid seedling under different salinity levels. Korean Journal of Soil Science and Fertilizer 45(1): 51–58. https://doi.org/10.7745/KJSSF.2012.45.1.051

Kumar M L V, Thippeswamy B and Kuppust I J. (2014). Evaluation of Bacillus cereus and Bacillus pumilus metabolites for CNS depressant and anticonvulsant activities. International Journal of Pharmacy and Pharmaceutical Sciences 6(2): 510–514.

Li Z Y, Hu Y, Huang Y Q and Huang Y. (2007). Isolation and phylogenetic analysis of the biologically active bacteria associated with three South China Sea sponges. Microbiology 76(4): 494–499. https://doi.org/10.1134/S0026261707040169

Li C, Liu W, Zhu P, Yang J and Cheng K. (2011). Phylogenetic diversity of bacteria associated with the marine sponge Gelliodes carnosa collected from the Hainan Island coastal waters of the South China Sea. Microbial Ecology 62(4): 800–812. https://doi.org/10.1007/s00248-011-9896-6

Loaëc M, Olier R and Guezennec J. (1997). Uptake of lead, cadmium and zinc by a novel bacterial exopolysaccharide. Water Research 31(5): 1171–1179. https://doi.org/10.1016/S0043-1354(96)00375-2

Longshaw C M, Wright J D, Farrell A M and Holland K T. (2002). Kytococcus sedentarius, the organism associated with pitted keratolysis, produces two keratin-degrading enzymes. Journal of Applied Microbiology 93(5): 810–816. https://doi.org/10.1046/j.1365-2672.2002.01742.x

Maleki-Ravasan N, Oshaghi M A, Afshar D, Arandian M H, Hajikhani S, Akhavan A A, Yakhchali B, Shirazi M H, Rassi Y, Jafari R, Aminian K, Fazeli-Varzaneh R A and Durvasula R. (2015). Aerobic bacterial flora of biotic and abiotic compartments of a hyperendemic Zoonotic Cutaneous Leishmaniasis (ZCL) focus. Parasites & Vectors 8: 63. https://doi.org/10.1186/s13071-014-0517-3

Maliji D, Olama Z and Holail H. (2013). Environmental studies on the microbial degradation of oil hydrocarbons and its application in Lebanese oil polluted coastal and marine ecosystem. International Journal of Current Microbiology and Applied Sciences 2(6): 1–18.

Marinho P R, Moreira A P B, Pellegrino E L P C, Muricy G, de Freire Bastos M D C, dos Santos K R N, Giambiagi-deMarval M, Laport M S. (2009). Marine Pseudomonas putida: A potential source of antimicrobial substances against antibiotic-resistant bacteria. Memórias do Instituto Oswaldo Cruz 104(5): 678–682. https://doi.org/10.1590/S0074-02762009000500002

Mehta A, Sidhu C, Pinnaka A K, Choudhury A R. (2014). Extracellular polysaccharide production by a novel osmotolerant marine strain of Alteromonas macleodii and its application towards biomineralization of silver. PLoS ONE 9(6): e98798. https://doi.org/10.1371/journal.pone.0098798

Pandey S, Sree A, Dash S S, Sethi D P and Chowdhury L. (2013). Diversity of marine bacteria producing beta-glucosidase inhibitors. Microbial Cell Factories 12: 35. https://doi.org/10.1186/1475-2859-12-35

Park S and Yoon J. (2012). Ruegeria arenilitoris sp. nov., isolated from the seashore sand around a seaweed farm. Antonie van Leeuwenhoek 102(4): 581–589. https://doi.org/10.1007/s10482-012-9753-8

Paul N C, Ji S H, Deng J X, Yu S H. (2013). Assemblages of endophytic bacteria in chilli pepper (Capsicum annuum L.) and their antifungal activity against phytopathogens in vitro. Plant Omics Journal 6(6): 441–448.

Phelan R W, O’Halloran J A, Kennedy J, Morrissey J P, Dobson A D W, O’Gara F and Barbosa T M. (2011). Diversity and bioactive potential of endospore-forming bacteria cultured from the marine sponge Haliclona simulans. Journal of Applied Microbiology 112(1): 65–78. https://doi.org/10.1111/j.1365-2672.2011.05173.x

Pindi P K, Yadav P R and Shanker A S. (2013). Identification of opportunistic pathogenic bacteria in drinking water samples of different rural health centers and their clinical impacts on humans. BioMed Research International Article ID 348250: 10. https://doi.org/10.1155/2013/348250

Planchamp C, Glauser G and Mauch-Mani B. (2015). Root inoculation with Pseudomonas putida KT2440 induces transcriptional and metabolic changes and systemic resistance in maize plants. Frontiers in Plant Science 5: 719. https://doi.org/10.3389/fpls.2014.00719

Podojil M and Gerber N N. (1967). The biosynthesis of 1,6-phenazinediol 5,10-dioxide (iodinin) by Brevibacterium iodinum. Biochemistry 6(9): 2701–2705. https://doi.org/10.1021/bi00861a009

Pospisil S, Benada O, Kofronova O, Petricek M, Janda L and Havlicek V. (1998). Kytococcus sedentarius (formerly Micrococcus sedentarius) and Dermacoccus nishinomiyaensis (formerly Micrococcus nishinomiyaensis) produce monensins, typical Streptomycescinnamonensis metabolites. Canadian Journal of Microbiology 44(10): 1007–1011. https://doi.org/10.1139/w98-081

Puspasari F, Radjasa O K, Noer A S, Nurachman Z, Syah Y M, van der Maarel M, Dijkhuizen L, Janecek S and Natalia D. (2013). Raw starch-degrading ?-amylase from Bacillus aquimaris MKSC 6.2: Isolation and expression of the gene, bioinformatics and biochemical characterization of the recombinant enzyme. Journal of Applied Microbiology 114(1): 108–120. https://doi.org/10.1111/jam.12025

Qian P Y, Dobrestov S, Dahms H U and Pawlik J. (2006). Antifouling activity and microbial diversity of two congeneric sponges Callyspongia spp. from Hong Kong and the Bahamas. Marine Ecology Progress Series 324(11): 151–165. https://doi.org/10.3354/meps324151

Ramanathan R, Field M R, O’Mullane A P, Smooker P M, Bhargava S K and Bansal V. (2013). Aqueous phase synthesis of copper nanoparticles: A link between heavy metal resistance and nanoparticle synthesis ability in bacterial systems. Nanoscale 5(6): 2300–2306. https://doi.org/10.1039/C2NR32887A

Riviere M L, Roumagnac M, Garrabou J and Bally M. (2013). Transient shifts in bacterial communities associated with the temperate gorgonian Paramuricea clavata in the Northwestern Mediterranean Sea. PLoS ONE 8(2): e57385. https://doi.org/10.1371/journal.pone.0057385

Rodrigues D F, Jesus E C, Ayala-del-Río H L, Pellizari V H, Gilichinsky D, SepulvedaTorres L and Tiedje J M. (2009). Biogeography of two cold-adapted genera: Psychrobacter and Exiguobacterium. The International Society for Microbial Ecology Journal 3(6): 658–665. https://doi.org/10.1038/ismej.2009.25

Rua C P J, Trindade-Silva A E, Appolinario L R, Venas T M, Garcia G D, Carvalho L S, Lima A, Kruger R, Pereira R C, Berlinck R G S, Valle R A B, Thompson C C and Thompson F. (2014). Diversity and antimicrobial potential of culturable heterotrophic bacteria associated with the endemic marine sponge Arenosclera brasiliensis. PeerJ 2: e419. https://doi.org/10.7717/peerj.419

Saidin J B, Wahid M E A and Pennec G L. (2017). Characterization of the in vitro production of N-acyl homoserine lactones by cultivable bacteria inhabiting the sponge Suberites domuncula. Journal of the Marine Biological Association of the United Kingdom 97(1): 119–127. https://doi.org/10.1017/S0025315416000151

Saitou N and Nei M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4(4): 406–425.

Sambrook J and Russell D W. (2006). Agarose gel electrophoresis. Cold Spring Harbor Protocols 1(1): pdb.prot4020. https://doi.org/10.1101/pdb.prot4020

Santos O C S, Soares A R, Machado F L S, Romanos M T V, Muricy G, Giambiagi-deMarval M and Laport M S. (2014). Investigation of biotechnological potential of spongeassociated bacteria collected in Brazilian coast. Letters in Applied Microbiology 60(2): 140–147. https://doi.org/10.1111/lam.12347

Santos-Gandelman J F, Cruz K, Crane S, Muricy G, Giambiagi-deMarval M, Barkay T, Laport M S. (2014). Potential application in mercury bioremediation of a marine sponge-isolated Bacillus cereus strain Pj1. Current Microbiology 69(3): 374–380. https://doi.org/10.1007/s00284-014-0597-5

Satheesh S, Soniamby A R, Shankar C V S and Punitha S M J. (2012). Antifouling activities of marine bacteria associated with sponge (Sigmadocia sp.). Journal of Ocean University of China 11(3): 354–360. https://doi.org/10.1007/s11802-012-1927-5

Schippers K J, Sipkema D, Osinga R, Smidt H, Pomponi S A, Martens D E and Wijffels R H. (2012). Cultivation of sponges, sponge cells and symbionts: Achievements and future prospects. Advances in Marine Biology 62(2): 273–337. https://doi.org/10.1016/B978-0-12-394283-8.00006-0

Sertan-de Guzman A A, Predicala R Z, Bernardo E B, Neilan B A, Elardo S P, Mangalindan G C, Tasdemir D, Ireland C M, Barraquio W L and Concepcion G P. (2007). Pseudovibriodenitrificans strain Z143-1, a heptylprodigiosin producing bacterium isolated from a Philippine tunicate. FEMS Microbiology Letters 277(2): 188–196. https://doi.org/10.1111/j.1574-6968.2007.00950.x

Shimazu M, Nguyen A, Mulchandani A and Chen W. (2003). Cell surface display of organophosphorus hydrolase in Pseudomonas putida using an ice-nucleation protein anchor. Biotechnology Progress 19(5): 1612–1614. https://doi.org/10.1021/bp0340640

Singh Y and Srivastava S K. (2014). Performance improvement of Bacillus aryabhattai ITBHU02 for high-throughput production of a tumor-inhibitory L-asparaginase using a kinetic model based approach. Journal of Chemical Technology and Biotechnology 89(1): 117–127. https://doi.org/10.1002/jctb.4121

Sujith P P, Mourya B S, Krishnamurthi S, Meena R M and Loka Bharathi P A. (2014). Mobilization of manganese by basalt associated Mn(II)-oxidizing bacteria from the Indian Ridge System. Chemosphere 95(2): 486–495. https://doi.org/10.1016/j.chemosphere.2013.09.103

Tamura K, Nei M and Kumar S. (2004). Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of the National Academy of Sciences (USA) 101(30): 11030–11035. https://doi.org/10.1073/pnas.0404206101

Tamura K, Stecher G, Peterson D, Filipski A and Kumar S. (2013). MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30(12): 2725–2729. https://doi.org/10.1093/molbev/mst197

Thacker R W and Freeman C J. (2012). Sponge-microbe symbioses: Recent advances and new directions. Advances in Marine Biology 62(2): 57–111. https://doi.org/10.1016/B978-0-12-394283-8.00002-3

Thomas T R, Kavlekar D P and LokaBharathi P A. (2010). Marine drugs from spongemicrobe association: A review. Marine Drugs 8(4): 1417–1468. https://doi.org/10.3390/md8041417

Trivedi N, Gupta V, Kumar M, Kumari P, Reddy C R K and Jha B. (2011). Solvent tolerant marine bacterium Bacillus aquimaris secreting organic solvent stable alkaline cellulase. Chemosphere 83(5): 706–712. https://doi.org/10.1016/j.chemosphere.2011.02.006

Turner S, Pryer K M, Miao V P W and Palmer J D. (1999). Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. Journal of Eukaryotic Microbiology 46(4): 327–338. https://doi.org/10.1111/j.1550-7408.1999.tb04612.x

Vargas W A, Weyman P D, Tong Y, Smith H O and Xu Q. (2011). [NiFe] Hydrogenase from Alteromonas macleodii with unusual stability in the presence of oxygen and high temperature. Applied and Environmental Microbiology 77(6): 1990–1998. https://doi.org/10.1128/AEM.01559-10

Vizcaino M I, Johnson W R, Kimes N E, Williams K, Torralba M, Nelson K E, Smith G W, Weil E, Moeller P D and Morris P J. (2010). Antimicrobial resistance of the coral pathogen Vibrio coralliilyticus and Caribbean sister phylotypes isolated from a diseased octocoral. Microbial Ecology 59(4): 646–57. https://doi.org/10.1007/s00248-010-9644-3

Wang Q and Nomura C T. (2010). Monitoring differences in gene expression levels and polyhydroxyalkanoate (PHA) production in Pseudomonas putida KT2440 grown on different carbon sources. Journal of Bioscience and Bioengineering 110(6): 653–659. https://doi.org/10.1016/j.jbiosc.2010.08.001

Webster N S and Taylor M W. (2012). Marine sponges and their microbial symbionts: Love and other relationships. Environmental Microbiology 14(2): 335–346. https://doi.org/10.1111/j.1462- 2920.2011.02460.x

Wen J, Ren C, Huan N, Liu Y and Zeng R. (2015). Draft genome of bagasse-degrading bacteria Bacillus aryabhattai GZ03 from deep sea water. Marine Genomics 19(1): 13–14. https://doi.org/10.1016/j.margen.2014.11.004