Apoptosis Activity of the Mouse Macrophage Cell Line J774A.1 Infected with a Recombinant BCG consisting the C-Terminus of Merozoite Surface Protein-1 of Plasmodium falciparum

Main Article Content

Anis Fadhilah Zulkipli
Nor Munirah Zakaria
Mohamed Hussein Abdikarim
Maryam Azlan
Nurulasma Abdullah
Norazmi Mohd. Nor
Rapeah Suppian

Abstract

Macrophage apoptosis exerts an efficient mechanism in controlling intracellular infection during innate immune response against various pathogens including malaria parasites. This study was carried out to determine the apoptosis activity in mouse macrophage cell line J774A.1 infected with a Mycobacterium bovis bacille Calmette-Guerin (BCG) clone and a recombinant BCG clone expressing the C-terminus of merozoite surface protein-1 (BCG-MSP1C) of Plasmodium falciparum for 48 h. In this study, a parent BCG cells was used as a control. The nuclear staining with Hoechst 33342 showed that the BCG-MSP1C cells was capable of increasing the nuclear condensation and morphological stages of apoptosis in the infected cells compared to the BCG- infected cells and the lipopolysaccharide (LPS)- stimulated cells. The flow cytometric analysis using Annexin-V and Propidium iodide (PI) staining confirmed that the BCG-MSP1C cells significantly increased the percentage of early apoptotic activity in the infected macrophage higher than the one stimulated by the parent BCG cells and LPS. This apoptotic response corresponded with the reduction of the anti-apoptotic Bcl-2 protein expression and higher p53 expression. The colorimetric assay demonstrated that the BCG cells capable of stimulating higher production of caspase-1, ?3, ?8 and ?9 while the BCG-MSP1C cells stimulated the expression of caspase-1 and -9 in the infected macrophages, suggesting the involvement of mitochondrial-mediated (intrinsic) pathway of apoptosis. In conclusion, both the BCG and BCG-MSP1C cells are capable of inducing macrophage apoptosis activity in the mouse macrophage cell line J774A.1. This mechanism is important for the elimination of pathogens such as malaria parasite during the phagocytosis activity of macrophage. However, the BCG-MSP1C cells showed higher apoptosis activity than those produced by the parent BCG cells.


 


Apoptosis makrofaj merupakan mekanisme yang berkesan dalam mengawal jangkitan intrasel semasa gerak balas imun semulajadi terhadap pelbagai patogen termasuk parasit malaria. Kajian ini dijalankan untuk menentukan aktiviti apoptosis dalam sel makrofaj mencit J774A.1 yang dijangkiti klon Mycobacterium bovis BCG dan BCG rekombinan yang mengekspreskan terminus C protein permukaan merozoit-1 (BCG-MSP1C) daripada Plasmodium falciparum selama 48 jam. Kajian ini menggunakan sel BCG sebagai kawalan. Pewarnaan nukleus menggunakan Hoest 33342 menunjukkan bahawa sel BCG-MSP1C berupaya meningkatkan kondensasi nuklear dan peringkat morfologi apoptosis dalam sel makrofaj yang dijangkiti secara signifikan berbanding sel yang dijangkiti oleh sel BCG dan sel yang dirangsang dengan LPS. Analisis flow sitometri menggunakan pewarnaan Annexin-V dan PI membuktikan bahawa sel BCG-MSP1C meningkatkan peratusan aktiviti apoptotik awal didalam sel makrofaj mencit yang dijangkiti berbanding sel yang dijangkiti oleh BCG dan dirangsang dengan LPS. Gerak balas apoptosis yang ditunjukkan ini seiring dengan pengurangan pengekpresan protein anti-apoptotik Bcl-2 dan peningkatan pengekspresan protein p53. Ujian permeteran warna menunjukkan sel BCG berupaya meningkatkan mengekspreskan aktiviti kaspase-1, -3, -8 dan -9 manakala sel BCG-MSP1C hanya mengaktifkan pengekspresan kaspase-1 and -9 di dalam sel makrofaj yang dijangkiti, mencadangkan penglibatan laluan apoptosis mitokondria (intrinsik). Sebagai kesimpulan, kedua-dua sel BCG dan BCG-MSP1C berupaya meningkatkan aktiviti apoptosis di dalam sel makrofaj mencit, J774A.1. Mekanisme ini adalah penting untuk menyingkirkan patogen seperti parasit malaria semasa aktiviti fagositosis makrofaj. Walaubagaimanapun, sel BCGMSP1C menunjukkan aktiviti apoptosis yang lebih tinggi berbanding sel BCG.

Article Details

How to Cite
Apoptosis Activity of the Mouse Macrophage Cell Line J774A.1 Infected with a Recombinant BCG consisting the C-Terminus of Merozoite Surface Protein-1 of Plasmodium falciparum. (2018). Tropical Life Sciences Research, 29(2), 53–76. https://doi.org/10.21315/tlsr2018.29.2.5
Section
Original Article

References

Aguiló N, Uranga S, Marinova D, Martín C and Pardo J. (2014). Bim is a crucial regulator of apoptosis induced by Mycobacterium tuberculosis. Cell Death and Disease 5: e1343. https://doi.org/10.1038/cddis.2014.313

Akira S and Takeda K. (2004). Toll-like receptor signaling. Nature Reviews Immunology 4: 499–511. https://doi.org/10.1038/nri1391

Akira S, Uematsu S and Takeuchi O. (2006). Pathogen recognition and innate immunity. Cell 124(4): 783–801. https://doi.org/10.1016/j.cell.2006.02.015

Aliprantis A O, Yang R B, Weiss D S, Godowski P and Zychlinsky A. (2000). The apoptotic signaling pathway activated by Toll-like receptor-2. The EMBO Journal 19(13): 3325–3336. https://doi.org/10.1093/emboj/19.13.3325

Amarante-Mendes G P, Finucane D M, Martin S J, Cotter T G, Salvesen G S and Green D R. (1998). Anti-apoptotic oncogenes prevent caspase-dependent and independent commitment for cell death. Cell Death and Differentiation 5(4): 298–306. https://doi.org/10.1038/sj.cdd.4400354

Ashkenazi A and Dixit V M. (1998). Death receptors: Signaling and modulation. Science 281(3): 1305–1308. https://doi.org/10.1126/science.281.5381.1305

Behar S M, Martin C J, Booty M G, Nishimura T, Zhao X, Gan H, Divangahi M and Remold H G (2011). Apoptosis is an innate defense function of macrophages against Mycobacterium tuberculosis. Mucosal Immunology 4(3): 279–287. https://doi.org/10.1038/mi.2011.3

Bloom B R. (1989). Vaccines for the third world. Nature 342(11): 115–120. https://doi.org/10.1038/342115a0.

Briken V and Miller J L. (2008). Living on the edge: Inhibition of host cell apoptosis by Mycobacterium tuberculosis. Future Microbiology 3(4): 415–422. https://doi.org/10.2217/17460913.3.4.415

Brogdon W G and McAllister J C. (1998). Insecticide resistance and vector control. Emerging Infectious Disease 4(4): 605. https://doi.org/10.3201/eid0404.980410

Candé C, Cecconi F, Dessen P and Kroemer G. (2002). Apoptosis-inducing factor (AIF): key to the conserved caspase-independent pathways of cell death? Journal of Cell Science 115(24): 4727–4734.

Carrie J R and Hardy K. (2003). THP-1 cell apoptosis in response to mycobacterial infection. Infection and Immunity 71(1): 254–259. https://doi.org/10.1128/IAI.71.1.254-259.2003

Chen M and Wang J. (2002). Initiator caspases in apoptosis signaling pathways. Apoptosis 7(4): 313–319. https://doi.org/10.1023/A:1016167228059

Chen M, Gan H and Remold H G. (2006). A mechanis of virulence: virulent Mycobacterium tuberculosis strain H37Rv, but not attenuated H37Ra, causes significant mitochondrial inner membrane discruption in macrophages leading to necrosis. Journal of Immunology 176(6): 3707–3716. https://doi.org/10.4049/jimmunol.176.6.3707

Cohen J J. (1993). Apoptosis. Immunology Today 14(3): 126–130. https://doi. org/10.1016/0167- 5699(93)90214-6 Cravo P, Napolitano H and Culleton R. (2015). How genomics is contributing to the fight against artemisinin-resistant malaria parasites. Acta Tropica 148(8): 1–7. https://doi.org/10.1016/j.actatropica.2015.04.007

Cregan S P, Dawson V L and Slack R S. (2004). Role of AIF in caspase-dependent and caspase- independent cell death. Oncogene 23(160): 2785–2796. https://doi.org/10.1038/sj.onc.1207517

Danelishvili L, McGarvey J, Li Y J and Bermudez L E. (2003). Mycobacterium tuberculosis infection causes different levels of apoptosis and necrosis in human macrophages and alveolar epithelial cells. Cellular Microbiology 5(9): 649–660. https://doi.org/10.1046/j.1462-5822.2003.00312.x

Danial N N and Korsmeyer S J. (2004). Cell death: critical control points. Cell 116(2): 205– 219. https://doi.org/10.1016/S0092-8674(04)00046-7

Decaudin D, Geley S, Hirsch T, Castedo M, Marchetti P, Macho A., Kofler R and Kroemer G. (1997). Bcl-2 and Bcl-XL antagonize the mitochondrial dysfunction preceding nuclear apoptosis induced by chemotherapeutic agents. Cancer Research 57(1): 62–67.

Dhaniah M, Rapeah S and Norazmi M N. (2014). Immunomodulatory effects of recombinant BCG expressing MSP-1C of Plasmodium falciparum on LPS-or LPS+ IFN-?stimulated J774A. 1 cells. Human Vaccines & Immunotherapeutics, 10(7): 1880–1886.

Donovan M and Cotter T G. (2004). Control of mitochondrial integrity by Bcl-2 family members and caspase-independent cell death. Biochimica Biophysica Acta 1644(2-3): 133–147. https://doi.org/10.1016/j.bbamcr.2003.08.011

Fadok V A, Voelker D R, Campbell P A, Cohen J J, Bratton D L and Henson P M. (1992). Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. Journal of Immunology 148(7): 2207–2216.

Farinacci M, Weber S and Kaufmann S H E. (2012). The recombinant tuberculosis vaccine rBCG ?ureC::hly(+) induces apoptotic vesicles for improved priming of CD4+ and CD8+ T cells. Vaccine 30(52): 1–7. https://doi.org/10.1016/j.vaccine.2012.10.031

Green D R and Reed J C. (1998). Mitochondria and apoptosis. Science 281(5381): 1309–1312.

Hogquist K A, Nett M A, Unanue E R and Chaplin D D. (1991). Interleukin 1 is processed and released during apoptosis. Proceedings of the National Academy of Sciences of the United States of America 88(19): 8485–8489. https://doi.org/10.1073/pnas.88.19.8485

Imawati B, Holt O, Michael L, Xu L and Xiaodong W. (1999). Biochemical pathways of caspase activation during apoptosis. Annual Review of Cell Developmental Biology 15(1): 269–290.

Jo E K, Yang C S, Choi C H and Harding C V. (2007). Intracellular signaling cascades regulating innate immune responses to mycobacteria: branching out from tolllike receptors. Cell Microbiology 9(5): 1087–1098. https://doi.org/10.1111/j.1462-5822.2007.00914.x

Keane J, Remold H G and Kornfeld H. (2000). Virulent Mycobacterium tuberculosis strains evade apoptosis of infected alveolar macrophages. The Journal of Immunology 164(4): 2016–2020. https://doi.org/10.4049/jimmunol.164.4.2016.

Klingler K, Tchou-Wong K M, Brändli O, Aston C, Kim R, Chi C and Rom W N. (1997). Effects of mycobacteria on regulation of apoptosis in mononuclear phagocytes. Infection and Immunity 65(12): 5272–5278.

Kostura M J, Tocci M J, Limjuco G, Chin J, Cameron P, Hillman A G, Chartrain N A and Schmidt J A. (1989). Identification of a monocyte specific pre-interleukin 1 beta convertase activity. Proceedings of the National Academy of Sciences 86(14): 5227–5231. https://doi.org/10.1073/pnas.86.14.5227

Krzyzowska M, Malewski T, Hamasur B, Augustynowicz-Kopec E, Schollenberger A, Pawlowski A and Niemialtowski M. (2008). Gene expression profiling of lipoarabinomannan-treated mouse macrophage cultures infected with Mycobacterium bovis BCG. Polish Journal of Microbiology 57(20): 125–133.

Krzyzowska M, Schollenberger A, Paw?owski A, Hamasur B, Winnicka A, AugustynowiczKopec E and Niemia?towski M. (2007). Lipoarabinomannan as a regulator of the monocyte apoptotic response to Mycobacterium bovis BCG Danish strain 1331 infection. Polish Journal of Microbiology 56(2): 89–96.

Labbe K and Saleh M. (2008). Cell death in the host response to infection. Cell Death and Differentiation 15(9): 1339–1349. https://doi.org/10.1038/cdd.2008.91

Lee J, Remold H G, Leong M H and Kornfeld H. (2006). Macrophage apoptosis in response to high intracellular burden of Mycobacterium tuberculosis is mediated by a novel caspase-independent pathway. Journal of Immunology 176(7): 4267–4274. https://doi.org/10.4049/jimmunol.176.7.4267

Martin S J, Reutelingsperger C P, McGahon A J, Rader J A, Van Schie R C, LaFace D M and Green D R. (1995). Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: Inhibition by overexpression of Bcl-2 and Abl. The Journal of Experimental Medicine 182(5): 1545–1556. https://doi.org/10.1084/jem.182.5.1545

Medzhitov R and Janeway C J. (2000). Innate immunity. New England Journal of Medicine 343(5): 338–344. https://doi.org/10.1056/NEJM200008033430506

Ministry of Health Malaysia. (2014). Management guidelines of malaria in Malaysia. Malaysia: Ministry of Health Malaysia. Miyashita T, Krajewski S, Krajewska M, Wang H G, Lin H K, Liebermann D A, Hoffman B and Reed J C. (1994). Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene 9(6): 1799–1805.

Moffitt K L, Martin S L and Walker B. (2010). Proteases implicated in apoptosis: old and new. Journal of Pharmacy and Pharmacology 62(5): 563–576. https://doi.org/10.1211/jpp.62.05.0002.

Molloy A, Laochumroonvorapong P and Kaplan G. (1994). Apoptosis, but not necrosis, of infected monocytes is coupled with killing of intracellular bacillus Calmette-Guerin. The Journal of Experimental Medicine 180(4): 1499–1509. https://doi.org/10.1084/jem.180.4.1499

Natarajan K, Kundu M, Sharma P and Basu J. (2011). Innate immune response to M.tuberculosis infection. Tuberculosis 91(5): 427–431. https://doi.org/10.1016/j.tube.2011.04.003

Nurul A A. (2007). Development of recombinant mycobacterium bovis Bacille Calmette Guerin (rBCG) expressing the 19 kDa C-terminus of Merozoite Surface Protein-1 (MSP-1C) and the 22kDa of Serine Repeat Antigent (SE22) of Plasmodium falciparum as a potential blood-stage malaria vaccine. PhD dissertation, Universiti Sains Malaysia.

Nurul A A and Norazmi M N. (2011). Immunogenicity and in vitro protective efficacy of recombinant Mycobacterium bovis bacille Calmette Guerin (rBCG) expressing the 19 kDaMerozoite surface protein-1 (MSP-119) antigen of Plasmodium falciparum. Parasitology Research 108(4): 887–897. https://doi.org/10.1007/s00436-010-2130-5

Nurul, A. A., Rapeah, S., & Norazmi, M. N. (2010). Plasmodium falciparum 19 kDa of merozoite surface protein-1 (MSP-119) expressed in Mycobacterium bovis bacille Calmette Guerin (BCG) is reactive with an inhibitory but not a blocking monoclonal antibody. Trop Biomed, 27(1), 60–67.

Phillips R S. (2001). Current status of malaria and potential for control. Clinical Microbiology Reviews 14(1): 208–226. https://doi.org/10.1128/CMR.14.1.208-226

Pope R M. (2002). Apoptosis as a therapeutic tool in rheumatoid arthritis. Nature Reviews. Immunology 2(7): 527–535. https://doi.org/10.1038/nri846

Raja A. (2004). Immunology of tuberculosis. Indian Journal of Medical Research 120(4): 213–232.

Rapeah S, Dhaniah M, Nurul A A and Norazmi M N. (2010). Phagocytic activity and proinflammatory cytokines production by the murine macrophage cell line J774A.1 stimulated by a recombinant BCG (rBCG) expressing the MSP1-C of Plasmodium falciparum. Tropical Biomedicine 27(3): 461–469.

Riendeau C J and Kornfeld H. (2003). THP-1 cell apoptosis in response to mycobacterial infection. Infection and Immunity 71(1): 254–259. https://doi.org/10.1128/IAI.71.1.254-259.2003

Schorey J S and Cooper A M. (2003). Macrophage signaling upon mycobacterial infection: The MAP kinases lead the way. Cell Microbiology 5(3): 133–142. https://doi.org/10.1046/j.1462-5822.2003.00263.x

Schlegel J, Peters I, Orrenius S, Miller D K, Thornberry N A, Yamin T T and Nicholson D W. (1996). CPP32/apopain is a key interleukin 1 beta converting enzyme-like protease involved in Fas-mediated apoptosis. The Journal of Biology Chemistry 271(4): 1841–1844. https://doi.org/10.1074/jbc.271.4.1841

Schumann R R, Belka C, Reuter D, Lamping N, Kirschning C J, Weber J R and Pfeil D. (1998). Lipopolysaccharide activates caspase-1 (interleukin-1-converting enzyme) in cultured monocytic and endothelial cells. Blood 91(2): 577–584.

Schwartzman R A and Cidlowski J A. (1993). The biochemistry and molecular biology of programmed cell death. Endocrine Review 14(2): 133–151.

Sinden R E and Gilles H M. (2002). The malaria parasites. In: Gilles H M and Warrell D A (eds.), Essential Malariology. London: Arnold, 8–34.

Sly L M, Hingley-Wilson S M, Reiner N E and McMaster W R. (2003). Survival of Mycobacterium tuberculosis in host macrophages involves resistance to apoptosis dependent upon induction of antiapoptotic Bcl-2 family member Mcl-1. The Journal of Immunology 170(1): 430–437. https://doi.org/10.4049/jimmunol.170.1.430

Snow R W, Guerra C A, Noor A M, Myint H Y and Hay S I. (2005). The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature 434(7030): 214–217. https://doi.org/10.1038/nature03342

Suzuki T, Kobayashi M, Isatsu K, Aiuchi T, Nakaya K and Nishihara T. (2004). Mechanisms involved in apoptosis of human macrophages induced by lipopolysaccharide from Actinobacillus actinomycetemcomitans in the presence of cycloheximide. Infection and Immunity 72(4): 1856–1865. https://doi.org/10.1128/IAI.72.4.1856-1865.2004

Taylor R C, Cullen S P and Martin S J. (2008). Apoptosis: controlled demolition at the cellular level. Nature Reviews Molecular Cell Biology 9(3): 231–241. https://doi.org/10.1038/nrm2312

Thornberry N A and Lazebnik Y. (1998). Caspases: enemies within. Science 281(5381): 1312–13166. https://doi.org/10.1126/science.281.5381.1312

Vanzembergh F, Brouckaert G, Naze F, Van Gucht S, Berghe T V, Krysko D, Vandenabeele P and Kalai M. (2011). Effect of LPS, dsRNA or interferons on the phagocytosis of dying cells or mycobacteria by macrophages. BMC Proceedings 5(1): 82. https://doi.org/10.1186/1753-6561-5-S1-P82

Vaseva A V and Moll U M. (2009). The mitochondrial p53 pathway. Biochimica Biophysica Acta- Bioenergetics 1787(5): 414–420. https://doi.org/10.1016/j.bbabio.2008.10.005

Vega-Manriquez X, López-Vidal Y, Moran J, Adams L G and Gutiérrez-Pabello J A. (2007). Apoptosis-inducing factor participation in bovine macrophage Mycobacterium bovis-induced caspase- independent cell death. Infection and Immunity 75(3): 1223–1228. https://doi.org/10.1128/IAI.01047-06

Wan Omar A, Roslaini A M, Ngah Z U, Azahari A A, Zahedi M and Baharudin O. (2007). A recombinant 19 kDa Plasmodium berghei merozoite surface protein 1 formulated with alum induces protective immune response in mice. Tropical Biomedicine 24(1): 119–126.

Wiwanitkit V. (2011). Concurrent malaria and dengue infection: A brief summary and comment. Asian Pacific Journal of Tropical Biomedicine 1(4): 326–327. https://doi.org/10.1016/S2221-1691(11)600531

World Health Organization. (2015). World Malaria Report 2015. Geneva: World Health Organization. Zhang G, Gurtu V, Kain S R and Yan G. (1997). Early detection of apoptosis using a fluorescent conjugate of annexin V. Biotechniques 23(23): 525–531.