Muscle Fatty Acid Content in Selected Freshwater Fish from Bukit Merah Reservoir, Perak, Malaysia
Main Article Content
Abstract
One of the oldest reservoirs in Peninsular Malaysia, Bukit Merah Reservoir, is a place in which locals participate in fishing activities. Inland fisheries are important to individuals, society and the environment; whereby they generate a source of income and food security. It is essential to gauge the nutrition value of fish caught in this location as food source, especially in terms of fatty acid composition, to better demonstrate its potential towards the betterment of human health and general well-being. From an initial list of 47 fish species available in Bukit Merah Reservoir, a total of seven edible freshwater fish species were identified, namely tinfoil barb (Barbonymus schwanenfeldii), Javanese barb (Barbonymus gonionotus), hampala barb (Hampala macrolepidota), beardless barb (Cyclocheilichthys apogon), glassfish (Oxygaster anomalura), striped snakehead (Channa striata) and horseface loach (Acantopsis dialuzona), and muscle fatty acid content was analysed to determine their nutritional value. Muscle of cyprinid fish contained substantial amount of omega-3 long-chain polyunsaturated fatty acids (LC-PUFA) compared to fish from Channidae and Cobitidae families. Javanese and tinfoil barbs muscle recorded the highest levels of combined eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) indicating the highest nutritional value comparatively. Unexpectedly, the striped snakehead, a predatory carnivore, contained lower levels of LC-PUFA compared to detrivorous/ herbivorous fishes. This further justifies that the omega-3 polyunsaturated fatty acids (PUFA) content in fish muscle varies according to their feeding habits. Even though it has been recommended that marine fish be consumed to improve health to a certain extent, there still are benefits of consuming freshwater fish, as there are several species which contain considerable amounts of beneficial omega-3 PUFA.
Reservoir Bukit Merah ialah salah satu takungan air yang tertua di Semenanjung Malaysia dan menjadi lokasi masyarakat tempatan menjalankan kegiatan penangkapan ikan. Aktiviti perikanan daratan penting bagi individu, masyarakat dan juga persekitaran kerana kegiatan ini dapat menjana sumber pendapatan dan memberi jaminan makanan. Nilai nutrisi ikan yang ditangkap di lokasi ini, terutamanya kandungan asid lemak, penting untuk diketahui, agar potensi terhadap peningkatan kesihatan manusia secara am dapat didemonstrasikan. Daripada senarai asal yang mengandungi 47 spesies ikan yang dijumpai di Reservoir Bukit Merah, sejumlah tujuh spesies ikan air tawar yang boleh dimakan telah dikenal pasti, iaitu lampam sungai (Barbonymus schwanenfeldii), lampam jawa (Barbonymus gonionotus), sebarau (Hampala macrolepidota), temperas (Cyclocheilichthys apogon), lalang (Oxygaster anomalura), haruan (Channa striata) dan pasir (Acantopsis dialuzona), dan kandungan asid lemak otot telah dianalisa untuk menentukan nilai nutrisi masing-masing. Otot ikan siprinid mengandungi lebih jumlah asid lemak politaktepu rantai panjang omega-3 (LC-PUFA) berbanding ikan daripada famili Channidae dan Cobitidae. Kandungan gabungan asid eikosapentaenoik (EPA) dan dokosaheksaenoik (DHA) yang tertinggi telah direkod pada otot ikan lampam jawa dan lampam sungai, ini menunjukkan kandungan nutrisi tertinggi berbanding spesies lain. Ikan haruan, iaitu sejenis pemangsa bersifat karnivor, mengandungi tahap LC-PUFA yang rendah berbanding ikan yang bersifat detrivor/herbivor. Hal ini menunjukkan bahawa kandungan asid lemak politaktepu (PUFA) omega-3 dalam otot ikan berbeza dan mengikut tabiat pemakanan mereka. Walaupun terdapat saranan bahawa memakan ikan laut dapat meningkatkan kesihatan kepada suatu tahap, namun demikian, masih terdapat manfaat daripada memakan ikan air tawar kerana terdapat beberapa spesies yang mengandungi PUFA omega-3 yang tinggi.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Ahlgren G, Vrede T and Goedkoop W. (2009). Fatty acid ratios in freshwater fish, zooplankton and zoobenthos – Are there specific optima? In: Arts M T, Brett M T and Kainz M. (eds.), Lipids in aquatic ecosystems. New York: Springer, 147–178. https://doi.org/10.1007/978-0-387-89366-2_7
Ambak M A. (2010). Fishes of Malaysia. Terengganu, Malaysia: Penerbit Universiti Malaysia Terengganu. Ambak M A and Jalal K C A. (2006). Sustainability issues of reservoir fisheries in Malaysia. Aquatic Ecosystem Health & Management 9: 165–173. https://doi.org/10.1080/14634980600701468
Baie S H and Sheikh K A. (2000). The wound healing properties of Channa striatus cetrimide cream–tensile strength measurement. Journal of Ethnopharmacology 71(1–2): 93–100. https://doi.org/10.1016/S0378-8741(99)00184-1
Bartley D M, De Graaf G J, Valbo-Jørgensen J and Marmulla G. (2015). Inland capture fisheries: Status and data issues. Fisheries Management and Ecology 22(1): 71– 77. https://doi.org/10.1111/fme.12104
Bell M V and Tocher D R. (2009). Biosynthesis of polyunsaturated fatty acids in aquatic ecosystems: general pathways and new directions. In: Kainz M, Brett M T and Arts M T. (eds.) Lipids in aquatic ecosystems. New York: Springer, 380 pp. https://doi.org/10.1007/978-0-387-89366-2_9
Birch D and Lawley M. (2012). Buying seafood: Understanding barriers to purchase across consumption segments. Food Quality and Preference 26(1): 12–21. https://doi.org/10.1016/j.foodqual.2012.03.004
Calder P C. (2006). n-3 polyunsaturated fatty acids, inflammation, and inflammatory diseases. American Journal of Clinical Nutrition 83(6): 1505S–1519S. https://doi.org/10.1093/ajcn/83.6.1505S
Carlucci D, Nocella G, De Devitiis B, Viscecchia R, Bimbo F and Nardone G. (2015). Consumer purchasing behaviour towards fish and seafood products: Patterns and insights from a sample of international studies. Appetite 84: 212–227. https://doi.org/10.1016/j.appet.2014.10.008
Cengiz E ?, Ünlu E and Bashan M. (2010). Fatty acid composition of total lipids in muscle tissues of nine freshwater fish from the River Tigris (Turkey). Turkish Journal of Biology 34: 433–438.
Connor W E. (2000). Importance of n-3 fatty acids in health and disease. The American Journal of Clinical Nutrition 71(1): 171s–5s. https://doi.org/10.1093/ajcn/71.1.171S
Cooke S J and Cowx I G. (2004). The role of recreational fishing in global fish crises. BioScience 54(9): 857–859. https://doi.org/10.1641/0006-3568(2004)054[0857: TRORFI]2.0.CO;2
Cuniff P A. (ed.) (1997). Official methods of analysis of AOAC International. (16th ed.). Arlington, VA: Association of Official Analytical Chemists (AOAC) International.
Czesny S J, Rinchard J, Hanson S D, Dettmers J M and Dabrowski K. (2011). Fatty acid signatures of Lake Michigan prey fish and invertebrates: Among-species differences and spatiotemporal variability. Canadian Journal of Fisheries and Aquatic Sciences 68(7): 1211–1230. https://doi.org/10.1139/f2011-048
De Silva S S, Francis D S and Tacon A G J. (2011). Fish oils in aquaculture: In retrospect. In: Turchini G M, Ng W-K and Tocher D R. (eds.) Fish oil replacement and alternative lipid sources in aquaculture feeds. Boca Raton, FL: CRC Press, 551 pp.
Department of Fisheries Malaysia. (2017). Annual Fisheries Statistic Report 2016 [Online]. Department of Fisheries Malaysia. [accessed 8 November 2017]. http://www.lkim.gov.my/en/annual-report/
Du Z Y, Clouet P, Huang L M, Degrace P, Zheng W H, He J G, Tian L X and Liu Y J. (2008). Utilization of different dietary lipid sources at high level in herbivorous grass carp (Ctenopharyngodon idella): Mechanism related to hepatic fatty acid oxidation. Aquaculture Nutrition 14(1): 77–92. https://doi.org/10.1111/j.1365-2095.2007.00507.x
Erkkila A, De Mello V D, Riserus U and Laaksonen D E. (2008). Dietary fatty acids and cardiovascular disease: An epidemiological approach. Progress in Lipid Research 47(3): 172–187. https://doi.org/10.1016/j.plipres.2008.01.004
Folch J, Lees M and Sloane Stanley G H. (1957). A simple method for the isolation and purification of total lipides from animal tissues. Journal of Biological Chemistry 226(1): 497–509.
Gante H F, Moreira Da Costa L, Micael J and Alves M J. (2008). First record of Barbonymus schwanenfeldii (Bleeker) in the Iberian Peninsula. Journal of Fish Biology 72(4): 1089–1094. https://doi.org/10.1111/j.1095-8649.2007.01773.x
Guedes A C, Amaro H M, Barbosa C R, Pereira R D and Malcata F X. (2011). Fatty acid composition of several wild microalgae and cyanobacteria, with a focus on eicosapentaenoic, docosahexaenoic and ?-linolenic acids for eventual dietary uses. Food Research International 44(9): 2721–2729. https://doi.org/10.1016/j. foodres.2011.05.020
Gutierrez L E and Da Silva R C M. (1993). Fatty acid composition of commercially important fish from Brazil. Scientia Agricola (Piracicaba, Braz.) 50(3): 478–483. Holub D J and Holub B J. (2004). Omega-3 fatty acids from fish oils and cardiovascular disease. Molecular and Cell Biochemistry 263(1): 217–225. https://doi.org/10.1023/B:MCBI.0000041863.11248.8d
Horrobin D F. (1993). Fatty acid metabolism in health and disease: The role of ?-6- desaturase. American Journal of Clinical Nutrition 57(Suppl): 732S–737S. https://doi.org/10.1093/ajcn/57.5.732S
Kottelat M, Whitten A, Kartikasari S N and Wirjoatmodjo S. (1993). Freshwater fishes of Western Indonesia and Sulawesi. Hong Kong: Perplus Editions. Kris-Etherton P M, Grieger J A and Etherton T D. (2009). Dietary reference intakes for DHA and EPA. Prostaglandins Leukot Essent Fatty Acids 81(2-3): 99–104. https://doi.org/10.1016/j.plefa.2009.05.011
Kuah M-K, Jaya-Ram A and Shu-Chien A C. (2015). The capacity for long-chain polyunsaturated fatty acid synthesis in a carnivorous vertebrate: Functional characterisation and nutritional regulation of a Fads2 fatty acyl desaturase with ?4 activity and an Elovl5 elongase in striped snakehead (Channa striata). Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 1851(3): 248–260. https://doi.org/10.1016/j.bbalip.2014.12.012
________. (2016). A fatty acyl desaturase (fads2) with dual Delta6 and Delta5 activities from the freshwater carnivorous striped snakehead Channa striata. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology 201: 146–155. https://doi.org/10.1016/j.cbpa.2016.07.007
Leaver M J, Villeneuve L A, Obach A, Jensen L, Bron J E, Tocher D R and Taggart J B. (2008). Functional genomics reveals increases in cholesterol biosynthetic genes and highly unsaturated fatty acid biosynthesis after dietary substitution of fish oil with vegetable oils in Atlantic salmon (Salmo salar). BMC Genomics 9: 299. https://doi.org/10.1186/1471-2164-9-299
Lynch A J, Cooke S J, Deines A M, Bower S D, Bunnell D B, Cowx I G, Nguyen V M, Nohner J, Phouthavong K, Riley B, Rogers M W, Taylor W W, Woelmer W, Youn S-J and Beard T D. (2016). The social, economic, and environmental importance of inland fish and fisheries. Environmental Reviews 24(2): 115–121. https://doi.org/10.1139/er-2015-0064
Mat Jais A M, Matori M F, Kittakoop P and Sowanborirux K. (1998). Fatty acid compositions in mucus and roe of Haruan, Channa striatus, for wound healing. General Pharmacology 30(4): 561–563. https://doi.org/10.1016/S0306-3623(97)00305-4
McManus A, Merga M and Newton W. (2011). Omega-3 fatty acids. What consumers need to know. Appetite 57(): 80–83. https://doi.org/10.1016/j.appet.2011.03.015
Mohd S M and Abdul Manan M J. (2012). Therapeutic potential of the haruan (Channa striatus): From food to medicinal uses. Malaysian Journal of Nutrition 18(1): 125– 136.
Mohd. Shafiq Z, Shah A S R M, Zarul,H H, Mohd. Syaiful M, Khaironizam M Z, Puteh K and Hamzah Y. (2014). An annotated checklist of fish fauna of Bukit Merah Reservoir and its catchment area, Perak, Malaysia. Check List 10(4): 822–828. https://doi.org/10.15560/10.4.822
Olsen S O. (2003). Understanding the relationship between age and seafood consumption: the mediating role of attitude, health involvement and convenience. Food Quality and Preference 14(3): 199–209. https://doi.org/10.1016/S0950-3293(02)00055-1
Özogul Y, Özogul F and Alagoz S. (2007). Fatty acid profiles and fat contents of commercially important seawater and freshwater fish species of Turkey: A comparative study. Food Chemistry 103(1): 217–223. https://doi.org/10.1016/j.foodchem.2006.08.009
Qin J and Fast A W. (1996). Size and feed dependent cannibalism with juvenile snakehead Channa striatus. Aquaculture 144(4): 313–320. https://doi.org/10.1016/0044-8486(96)01299-9
_________. (1997). Food selection and growth of young snakehead Channa striatus. Journal of Applied Ichthyology 13(1): 21–25. https://doi.org/10.1111/j.1439-0426.1997.tb00093.x
Rahman S A, Huah T S, Nassan O and Daud N M. (1995). Fatty acid composition of some Malaysian freshwater fish. Food Chemistry 54(1): 45–49. https://doi.org/10.1016/0308-8146(95)92660-C
Rainboth W J. (1996). Fishes of the Cambodian Mekong. FAO species identification field guide for fishery purposes. Rome: Food and Agriculture Organization of The United Nations.
Samantaray K and Mohanty S S. (1997). Interactions of dietary levels of protein and energy on fingerling snakehead, Channa striata. Aquaculture 156(3–4): 241–249. https://doi.org/10.1016/S0044-8486(97)00140-3
Schipp G. (2008). Is the use of fishmeal and fish oil in aquaculture diets sustainable? Technical report number 124, Department of Primary Industry and Fisheries, Northern Territory Department of Primary Industry and Resources, Darwin Australia.
Simopoulos A P. (1991). Omega-3 fatty acids in health and disease and in growth and development. The American Journal of Clinical Nutrition 54(3): 438–463. https://doi.org/10.1093/ajcn/54.3.438
Steffens W. (1997). Effects of variation in essential fatty acids in fish feeds on nutritive value of freshwater fish for humans. Aquaculture 151(1–4): 97–119. https://doi.org/10.1016/S0044-8486(96)01493-7
Strobel C, Jahreis G and Kuhnt K. (2012). Survey of n-3 and n-6 polyunsaturated fatty acids in fish and fish products. Lipids in Health and Disease 11: 144. https://doi.org/10.1186/1476-511X-11-144
Tocher D R. (2003). Metabolism and functions of lipids and fatty acids in teleost fish. Reviews in Fisheries Science 11: 107–184. https://doi.org/10.1080/713610925
Ugoala C, Ndukwe G I and Audu T O. (2008). Comparison of fatty acids profile of some freshwater and marine fishes. Internet Journal of Food Safety 10: 9–17.
Vasconi M, Caprino F, Bellagamba F, Busetto M L, Bernardi C, Puzzi C and Moretti V M. (2015). Fatty acid composition of freshwater wild fish in subalpine lakes: A comparative study. Lipids 50(3): 283–302. https://doi.org/10.1007/s11745-014-3978-4
Welcomme R L, Cowx I G, Coates D, Béné C, Funge-Smith S, Halls A and Lorenzen K. (2010). Inland capture fisheries. Philosophical Transactions of the Royal Society B: Biological Sciences 365(1554): 2881–2896. https://doi.org/10.1098/rstb.2010.0168
Zuraini A, Somchit M N, Solihah M H, Goh Y M, Arifah A K, Zakaria M S, Somchit N, Rajion M A, Zakaria Z A and Mat Jais A M. (2006). Fatty acid and amino acid composition of three local Malaysian Channa spp. fish. Food Chemistry 97(4): 674–678. https://doi.org/10.1016/j.foodchem.2005.04.031