Shoot Induction in White Eggplant (Solanum melongena L. Cv. Bulat Putih) using 6-Benzylaminopurine and Kinetin

Main Article Content

Pei Ching Foo
Ze Hong Lee
Chee Keong Chin
Sreeramanan Subramaniam
Bee Lynn Chew

Abstract

Solanum melongena L. commonly known as the eggplant or brinjal comes from the family of Solanaceae, sharing the same ancestor with the tomato and potato. It is an economically important crop worldwide, being well studied for its medicinal properties, nutritional values and its role as an alternative model plant. The eggplant fruit has been previously used for treatments of various diseases such as bronchitis, asthma, arthritis and diabetes as well as its nutritive properties that are beneficial to the human diet. Plant transformation studies on the eggplant have been widely done for the production of transgenic eggplants harbouring genes that are beneficial for optimal plant growth and fruit production. Shoot induction is an essential step required for the successful regeneration of transformed plant tissues and therefore is an essential pre-requisite in Agrobacterium-mediated transformation. The local eggplant cv. Bulat Putih is a local cultivar of eggplant in Malaysia with white and round fruits making it a potential model plant colour pigment accumulation studies in fruit crops. The current work aims to investigate the shoot induction potential of 6-benzylaminopurine (BAP) and Kinetin from cotyledon explants of eggplant cv. Bulat Putih. Results indicated that both BAP and Kinetin were able to induce the regeneration of callus from cotyledon explants. On the other hand, Kinetin at the concentration of 2.0 mg/L successfully induced shoots at the value of 1.50 ± 0.22 shoots per explant, whereas BAP alone did not trigger any formation of shoots. This study indicated that kinetin alone is sufficient to induce shoots in eggplant cv. Bulat Putih without the presence of BAP.


 


Solanum melongena L. biasanya dikenali sebagai terung adalah dari famili Solanaceae, yang sama asal usulnya dengan pokok tomato dan pokok ubi kentang. Ia adalah tanaman yang penting secara ekonomi di seluruh dunia dan dikaji untuk sifat perubatannya, nilai pemakanan dan peranannya sebagai model alternatif bagi tumbuhan. Buah terung telah digunakan sejak dahulu untuk rawatan pelbagai penyakit seperti bronkitis, asma, arthritis dan kencing manis serta sifat khasiatnya yang bermanfaat kepada diet manusia. Kajian transformasi tumbuhan pada terung telah dikaji secara meluas untuk penghasilan terung transgenik yang membawa gen yang bermanfaat untuk pertumbuhan tanaman yang optimum dan pengeluaran buah yang bermutu. Penginduksian pucuk adalah langkah penting yang diperlukan untuk penjanaan semula tisu tumbuhan yang berjaya kerana ianya merupakan prasyarat penting dalam transformasi menggunakan Agrobakterium sebagai pengantara. Terung tempatan cv. Bulat Putih adalah kultivar terung tempatan di Malaysia dengan buah putih dan bulat menjadikannya satu model potensi untuk kajian pengumpulan pigmen warna tumbuhan untuk tanaman buah-buahan. Kajian ini bertujuan untuk menyiasat potensi penginduksian pucuk menggunakan 6-benzylaminopurine (BAP) dan Kinetin dari eksplan kotiledon terung cv. Bulat Putih. Keputusan menunjukkan bahawa kedua-dua BAP dan kinetin boleh menginduksikan regenerasi kalus dari eksplan kotiledon. Selain itu, kinetin pada kepekatan 2.0 mg/L berjaya menginduksikan pucuk pada nilai 1.50 ± 0.22 pucuk untuk setiap eksplan manakala BAP sahaja tidak dapat menginduksikan pucuk. Kajian ini menunjukkan bahawa Kinetin sahaja sudah mencukupi untuk menginduksi pucuk dalam terung cv. Bulat Putih tanpa kehadiran BAP.

Article Details

How to Cite
Shoot Induction in White Eggplant (Solanum melongena L. Cv. Bulat Putih) using 6-Benzylaminopurine and Kinetin. (2018). Tropical Life Sciences Research, 29(2), 119–129. https://doi.org/10.21315/tlsr2018.29.2.9
Section
Original Article

References

Abu-Romman S M, Al-Hadid K A and Arabiyyat A R. (2015). Kinetin is the most effective cytokinin on shoot multiplication from cucumber. Journal of Agricultural Science 7(10): 159–165.

Arpaia S, Mennella G, Onofaro V, Perri E, Sunseri F and Rotino G L. (1997). Production of transgenic eggplant (Solanum melongena L.) resistant to Colorado potato beetle (Leptinotarsa decemlineata Say). Theoretical and Applied Genetics 95(3): 329– 334. https://doi.org/10.1007/s001220050567

Ashrafuzzaman M, Hossain M M, Ismail M R, Haque M S, Shahidullah S M and Uz-zaman S. (2009). Regeneration potential of seedling explants of chilli (Capsicum annuum). African Journal of Biotechnology 8(4): 591–596.

Bhat S V, Jadhav A S, Pawar B D, Kale A A, Chimote V P and Pawar S V. (2013). In vitro shoot organogenesis and plantlet regeneration in brinjal (Solanum melongena L.). The Bioscan 8(3): 821–824. Bhatti K H, Jamil M D and Tufail M. (2014). Direct organogenesis (shoot and root) of eggplant (Solanum melongena L.) through tissue culture. World Applied Sciences Journal 30(3): 317–321.

Bhatti K H, Kausar N, Rashid U, Hussain K, Nawaz K and Siddiqi E H. (2013). Effects of biotic stresses on eggplant (Solanum melongena L.). World Applied Sciences Journal 26(3): 302–311.

Billings S, Jelenkovic G, Chin C K and Eberhardt J. (1997). The effect of growth regulators and antibiotics on eggplant transformation. Journal of the American Society for Horticultural Science 122(2): 158–162.

Borjian L and Arak H. (2013). A study on the effect of different concentration of plant hormones (BAP, NAA, 2, 4-D, and Kinetin) on callus induction in Brassica napus. International Research Journal of Applied and Basic Sciences 5: 519–521.

Chen Q, Jelenkovic G, Chin C K, Billings S, Eherhardt J, Goffreda J C and Day P. (1995). Transfer and transcriptional expression of Coleopteran CryIIIB endotoxin gene of Bacillus thuringiensis in eggplant. Journal of the American Society for Horticultural Science 120(6): 921–927.

Collonnier C, Fock I, Kashyap V, Rotino G L, Daunay M C, Lian Y, Mariska I K, Rajam M V, Servaes A, Ducreux G and Sihachakr D. (2001). Applications of biotechnology in eggplant. Plant Cell, Tissue and Organ Culture 65(2): 91–107. https://doi.org/10.1023/A:1010674425536

Daunay M C, Laterrot H and Janick J. (2008). Iconography and history of Solanaceae: Antiquity to the 17th century. In J Janick (ed.), Horticultural Reviews, Volume 34. Hoboken: John Wiley & Sons, Inc., pp. https://doi.org/10.1002/9780470380147.ch1

Davies P J. (1995). The plant hormones: Their nature, occurrence, and functions. In: P J Davies (ed.), Plant hormones: Physiology, biochemistry and molecular biology. Dordrecht: Springer Netherlands, 1–12. https://doi.org/10.1007/978-94-011-0473-9_1

Deshwal R K and Trivedi P. (2011). Effect of kinetin on enhancement of tuberous root production of Chlorophytum borivilianum. International Journal of Innovations in Biological and Chemical Sciences 1: 28–31.

Fári M, Nagy I, Csányi M, Mitykó J and Andrásfalvy A. (1995). Agrobacterium mediated genetic transformation and plant regeneration via organogenesis and somatic embryogenesis from cotyledon leaves in eggplant (Solanum melongena L. cv. ‘Kecskemetilila’). Plant Cell Reports 15(1–2): 82–86. https://doi.org/10.1007/BF01690259

Franklin G, Sheeba C J and Sita G L. (2004). Regeneration of eggplant (Solanum melongena L.) from root explants. In Vitro Cellular and Developmental Biology–Plant 40(2): 188–191. https://doi.org/10.1079/IVP2003491

Fukuoka H, Yamaguchi H, Nunome T, Negoro S, Miyatake K and Ohyama A. (2010). Accumulation, functional annotation, and comparative analysis of expressed sequence tags in eggplant (Solanum melongena L.), The third pole of the genus Solanum species after tomato and potato. Gene 450(1): 76–84. https://doi.org/10.1016/j.gene.2009.10.006

Huda A, Bari M A, Rahman M and Nahar N. (2007). Somatic embryogenesis in two varieties of eggplant (Solanum melongena L.). Research Journal of Botany 2: 195–201. https://doi.org/10.3923/rjb.2007.195.201J

amil M D, Parvaiz M, Tufail M, Arshad J, Hussain S and Imtiaz S. (2013). Callogenesis, regeneration of shoot and root of brinjal (Solanum melongena L.). World Applied Sciences Journal 26: 1039–1045. Kashyap V, Kumar S V, Collonnier C, Fusari F, Haicour R, Rotino G L and Rajam M V. (2003). Biotechnology of eggplant. Scientia Horticulturae 97(1): 1–25. https://doi.org/10.1016/S0304-4238(02)00140-1

Kaviani B, Hesar A A, Tarang A, Zanjani S B, Hashemabadi D and Ansari M H. (2013). Effect of kinetin (Kn) and naphthalene acetic acid (NAA) on the micropropagation of Matthiola incana using shoot tips, and callus induction and root formation on the leaf explants. African Journal of Agricultural Research 8(30): 4134–4139.

Magioli C and Mansur E. (2005). Eggplant (Solanum melongena L.): Tissue culture, genetic transformation and use as an alternative model plant. Acta Botonica Brasilica 19(1): 139–148. https://doi.org/10.1590/S0102-33062005000100013

Magioli C, Pinheiro M M and Mansur E. (2000). Establishment of an efficient Agrobacteriummediated transformation system for eggplant and study of a potential biotechnologically useful promoter. Journal of Plant Biotechnology 2(1): 43–49.

Magioli C, Rocha A P M, De Oliveira D E and Mansur E. (1998). Efficient shoot organogenesis of eggplant (Solanum melongena L.) induced by thidiazuron. Plant Cell Reports 17(8): 661–663. https://doi.org/10.1007/s002990050461

Murashige T and Skoog F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum 15(3): 473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

Niggeweg R, Michael A J and Martin C. (2004). Engineering plants with increased levels of the antioxidant chlorogenic acid. Nature Biotechnology 22(6): 746–754. https://doi.org/10.1038/nbt966

Prabhavathi V, Yadav J S, Kumar P A and Rajam M V. (2002). Abiotic stress tolerance in transgenic eggplant (Solanum melongena L.) by introduction of bacterial mannitol phosphodehydrogenase gene. Molecular Breeding 9(2): 137–147. https://doi.org/10.1023/A:1026765026493

Pratap D, Kumar S, Raj S K and Sharma A K. (2011). Agrobacterium-mediated transformation of eggplant (Solanum melongena L.) using cotyledon explants and coat protein gene of cucumber mosaic virus. Indian Journal of Biotechnology 10(1): 19–24.

Rahman M, Asaduzzaman M, Nahar N and Bari M A. (2006). Efficient plant regeneration from cotyledon and midrib derived callus in eggplant (Solanum melongena L.). Journal of Biosciences 14: 31–38.

Rattan P, Kumar S, Salgotra R K, Samnotra R K and Sharma F. (2015). Development of interspecific F1 hybrids (Solanum melongena × Solanum khasianum) in eggplant through embryo rescue technique. Plant Cell, Tissue and Organ Culture 120(1): 379–386. https://doi.org/10.1007/s11240-014-0591-4

Riefler M, Novak O, Strnad M and Schmülling T. (2006). Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. The Plant Cell 18: 40–54. https://doi.org/10.1105/tpc.105.037796

Robinson J P and Saranya S. (2013). An improved method for the In Vitro propagation of Solanum melongena L. International Journal of Current Microbiology and Applied Sciences 2(6): 299–306.

Rodriguez de S D V and Hadley M. (2002). Chlorogenic acid modifies plasma and liver concentrations of: cholesterol, triacylglycerol, and minerals in (fa/fa) Zucker rats. Journal of Nutritional Biochemistry 13(12): 717–726. https://doi.org/10.1016/S0955-2863(02)00231-0

Rotino G L and Gleddie S. (1990).Transformation of eggplant (Solanum melongena L.) using a binary Agrobacterium tumefaciens vector. Plant Cell Reports 9(1): 26–29. https://doi.org/10.1007/BF00232129

Rotino G L. (2016). Anther culture in eggplant (Solanum melongena L.). Methods in Molecular Biology 1359: 453–66. https://doi.org/10.1007/978-1-4939-3061-6_25

Salas P, Rivas-Sendra A, Prohens J and Seguí-Simarro J M. (2012). Influence of the stage for anther excision and heterostyly in embryogenesis induction from eggplant anther cultures. Euphytica 184(2): 235–250. https://doi.org/10.1007/s10681-011-0569-9

Sarker R H, Yesmin S and Hoque M I. (2006). Multiple shoot formation in eggplant (Solanum melongena L.). Plant Tissue Culture and Biotechnology 16(1): 53–61.

Scalzo R L, Fibiani M, Francese G, D’Alessandro A, Rotino G L, Conte P and Mennell G. (2016). Cooking influence on physico-chemical fruit characteristics of eggplant (Solanum melongena L.). Food Chemistry 194: 835–842. https://doi.org/10.1016/j.foodchem.2015.08.063

Shah S H, Ali S, Jan S A, Din J and Ali G M. (2015). Callus induction, in-vitro shoot regeneration and hairy root formation by the assessment of various plant growth regulators in tomato (Solanum lycopersicum Mill.). Journal of Animal and Plant Sciences 25(2): 528–538.

Sharma P and Rajam M V. (1995). Genotype, explant and position effects on organogenesis and somatic embryogenesis in eggplant (Solanum melongena L.). Journal of Experimental Botany 46(1): 135–141. https://doi.org/10.1093/jxb/46.1.135

Sidhu M K, Dhatt A S, Sandhu J S and Gosal S S. (2014). Biolistic transformation of cry 1Ac gene in eggplant (Solanum melongena L.). International Journal of Agriculture, Environment and Biotechnology 7(4): 679.

Swamynathan B, Nadanakunjidam S, Ramamourti A, Sindhu K and Ramamoorthy D. (2010). In vitro plantlet regeneration through somatic embryogenesis in Solanum melongena (Thengaithittu variety). Academic Journal of Plant Sciences 3(2): 64– 70.

Tucker M R and Laux T. (2007). Connecting the paths in plant stem cell regulation. Trends in Cell Biology 17(8): 403–410. https://doi.org/10.1016/j.tcb.2007.06.002

Van Dijk A E, Olthof M R, Meeuse J C, Seebus E, Heine R J and Van Dam R M. (2009). Acute effects of decaffeinated coffee and the major coffee components chlorogenic Acid and trigonelline on glucose tolerance. Diabetes Care 32(6): 1023–1025. https://doi.org/10.2337/dc09-0207

Wang F, Li G, Chen S, Jiang Y and Wang S. (2013). Callus induction and cell suspension culture of eggplant (Solanum melongena L.). Journal of Agricultural Science and Technology 14(9): 1220.

Zayova E, Nikova V, Ilieva K and Philipov P. (2008). Callusogenesis of eggplant (Solanum melongena L.). Comptes Rendus de l'Academie Bulgare Des Sciences 63(12): 1749–1756.