The Phosphofructokinase and Pyruvate Kinase Genes in Apis andreniformis and Apis cerana indica: Exon Intron Organisation and Evolution
Main Article Content
Abstract
Genes related to carbohydrate metabolism have evolved rapidly in eusocial bees, including honey bees. However, the characterisation of carbohydrate metabolism genes has not been reported in Apis andreniformis or Apis cerana indica. This study aimed to characterise phosphofructokinase (PFK) and pyruvate kinase (PK) genes in these honey bee species and to analyse the evolution of the genus Apis using these genes. This study found the first data regarding A. andreniformis PFK and PK-like nucleotide sequences. A BLAST-n algorithm-based search showed that A. andreniformis and A. c. indica PFK and PK genes were homologous with those of Apis florea and Apis cerana cerana from Korea, respectively. Multiple alignments of PFKs from five Apis species showed many exon gains and losses, but only one among the PKs. Thus, the exon–intron organisation of the PK genes may be more conserved compare with that of the PFKs. Another evolutionary pattern indicated that more nucleotide substitutions occurred in Apis’ PK than PFK genes. Deduced PFK amino acid sequences revealed a PFK consensus pattern of 19 amino acids, while the deduced PK amino acid sequences were predicted to have barrel and alpha/beta domains. Based on these two metabolism-related genes, The Neighbour-joining and Maximum likelihood phylogenetic trees are congruent and revealed that the A. andreniformis and A. florea group were in the basal position. Apis mellifera, A. cerana, and Apis dorsata formed a monophyletic clade, although the positions of A. mellifera and A. dorsata were different in the nucleotide- and amino acid-based phylogenetic trees.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Alexander B A. (1991). Phylogenetic analysis of the genus Apis (Hymenoptera: Apidae). Entomological Society of America 84: 137–149. https://doi.org/10.1093/aesa/84.2.137
Arias M C and Sheppard W S. (2005). Phylogenetic relationships of honey bees (Hymenoptera: Apinae: Apini) inferred from nuclear and mitochondrial DNA sequence data. Molecular Phylogenetic Evolution 37(1): 25–35. https://doi.org/10.1016/j.ympev.2005.02.017
Chien Y, Zhu Y and Chuen C. (1999). Complementary DNA cloning and analysis of gene structure of Pyruvate kinase from Drosophila melanogaster. Zoological Studies 38(3): 322–332.
Currie P D and Sullivan D T. (1994). Structure and expression of the gene encoding PFK in Drosophila melanogaster. The Journal of Biological Chemistry 269(40): 24679–24687.
Elson A, Levanon D, Brandies M, Dafni N, Bernstein Y, Danciger E and Groner Y. (1990). The Structure of the human liver-type Phosphofructokinase gene. Genomics 7(1): 47–56. https://doi.org/10.1016/0888-7543(90)90517-x
Fischman B J, Woodard S H and Robinson G E. (2011). Molecular evolutionary analyses of insect societies. Proceedings of the National Academy Sciences 108(Suppl. 2): 10847–10854. https://doi.org/10.1073/pnas.1100301108
Hadisoesilo S, Otis G W and Meixner M. (1995). Two distinct populations of cavity-nesting honey bees (Hymenoptera, Apidae) in South Sulawesi, Indonesia. Journal of the Kansas Entomological Society 68(4): 399–407.
Kunieda T, Fujiyuki T, Kucharski R, Foret S, Ament S A, Toth A L, Ohashi K,Takeuchi H, Kamikouchi A, Kage E, Morioka M, Beye M, Kubo T, Robinson G E and Maleszka R. (2006) Carbohydrate metabolism genes and pathways in insects: insights from the honey bee genome. Insect Molecular Biology 15(5): 563–576. https://doi.org/10.1111/j.1365-2583.2006.00677.x
Larkin M, Blackshields G, Brown N P, Chenna R, Mcgettigan P, McWilliam H, Valentin F, Wallace I M, Wilm A, Lopez R, Thompson J D, Gibson T J and Higgins D G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics 23(21): 2947–2948. https://doi.org/10.1093/bioinformatics/btm404
Lee C, Kao M, French B A, Putneyell S D and Chang S H. (1987). The rabbit muscle PFK gene: implications for protein structure, function, and tissue specificity. The Journal of Biological Chemistry 262(9): 4196–4199.
Lonberg N and Gilbert W. (1985). Intron/exon structure of the chicken pyruvate kinase gene. Cell 40(1): 81–90. https://dx.doi.org/10.1016/0092-8674(85)90311-3
Lowe T M and Eddy S R. (1997). tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acid Research 25(5): 955–964.
Muirhead H, Clayden D A, Barford D, Lorimer C G, Fothergill-Gillmore L A, Schiltz E and Schmitt W. (1986). The structure of cat muscle pyruvate kinase. The EMBO Journal 5(3): 478–481.
Park D, Jung J W, Choi B, Jayakodi M, Lee J, Lim J, Yu Y, Choi Y, Lee M and Park Y. (2015). Uncovering the novel characteristics of Asian honey bee, Apis cerana, by whole genome sequencing. BMC Genomic 16(1): 1–16. https://doi.org/10.1186/1471-2164-16-1
Poorman R A, Randolph A, Kemp R G and Heinrikson R L. (1984). Evolution of PFK-gene duplication and creation of new effector sites. Nature 309: 467–469. https://doi.org/10.1038/309467a0
Raffiudin R and Crozier R H. (2007). Phylogenetic analysis of honey bee behavioural evolution. Molecular Phylogenetic Evolution 43(2): 543–552. https://doi.org/10.1016/j.ympev.2006.10.013
Rongnoparut P, Verdon C P, Gehnrich S C and Sul H S. (1991). Isolation and characterization of the transcriptionally regulated mouse liver (B-type) Phosphofructokinase gene and its promoter. The Journal of Biological Chemistry 266(13): 8086–8091.
Ruttner F. (1988). Biogeography and taxonomy of honeybees. Berlin Heydelberg: SpingerVerlag.
Sambrooks J, Fristch E F and Maniatis T. (1989). Molecular cloning: A laboratory manual. New York: Cold Spring Harbor Laboratory Pr.
Takenaka M, Noguchi T, Inoue H, Yamada K, Matsuda T and Tanaka T. (1989). Rat Pyruvate kinase M gene. The Journal of Biological Chemistry 264(4): 2363–2367.
Takenaka M, Noguchi T, Sadahiro S, Hirai H, Yamada K K, Matsuda T, Imai E and Tanaka T. (1991). Isolation and characterization of the human pyruvate kinase M gene. European Journal of Biochemistry 198(1): 101–106. https://doi.org/10.1111/j.1432-1033.1991.tb15991.x
Tamura K, Stecher G, Peterson D, Filipski A and Kumar S. (2013). MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30(12): 2725–2729. https://doi.org/10.1093/molbev/mst197
Tanaka H, Roubik D W, Kato M, Liew F and Gunsalam G. (2001). Phylogenetic position of Apis nuluensis of northern Borneo and phylo-geography of Apis. cerana as inferred from mitochondrial DNA sequences. Insectes Society 48(1): 44–51. https://doi.org/10.1007/pl00001744
The Honeybee Genome Sequencing Consortium. (2006). Insights into social insects from the genome of the honeybee Apis mellifera. Nature 443: 931–949. https://doi.org/10.1038/nature05260
Tingek S, Mardan M, Rinderer T E, Koeniger N and Koeniger G. (1988). The rediscovery of Apis vechti Maa 1953: The Sabah honeybee. Apidologie 19(1): 97–102. https://doi.org/10.1051/apido:19880107
Vaisanen P A, Reddy G R, Sharma P M, Kohani R, Johnson J L, Raney A K, Babior B M and Mclachan A. (1992). Cloning and characterization of the human muscle PFK gene. DNA Cell Biology 11(6): 543–552. https://doi.org/10.1089/dna.1992.11.461
Voet D and Voet J G. (1995). Biochemistry (2nd ed.). United State of America: John Willey and Sons Inc.
Woodard S H, Fischman B J, Venkat A, Hudson M E, Varala K and Cameron S A. (2011). Genes involved in convergent evolution of eusociality in bees. Proceedings of the National Academy Sciences 108(18): 7472–7477. https://doi.org/10.1073/pnas.1103457108
Wu Y and Kuang B. (1987). Two species of small honeybee-a study of the genus Micrapis. Bee World 68(3): 153–155. https://doi.org/10.1080/0005772x.1987.11098924