Reduced Expression of Glycerol-3-phosphate dehydrogenase (Gpdh) in Drosophila melanogaster Pasha-Mutants Suggests a miRNA-dependency in its Regulation

Main Article Content

Najat Dzaki
Ghows Azzam

Abstract


In Drosophila, the Glycerol-3-phosphate dehydrogenase (Gpdh) enzyme plays an active role in many pathways, including the glycerol metabolic pathway and the alpha-glycerophosphate cycle. It is also important for ethanol metabolism, as well as flight muscle development. Recent years have exposed small RNAs as a major posttranscriptional regulator of multiple metabolic-pathway genes. Of the many kinds of these RNAs at work, micro RNAs (miRNAs) are the most widely implicated and well understood. However, the roles they may play in regulating Gpdh has never been shown in any model organism. In this study, a pasha-mutant D. melanogaster strain was found to express only 25% of the Gpdh levels typical of their wild type counterparts. Such mutants lack the ability to produce pasha, a protein integral during miRNA-processing, and as a consequence do not produce mature miRNAs. As miRNA-centric regulation often culminates in the depletion of their targets, the concurrent downregulation of Gpdh observed in their absence here therefore alludes to two possibilities: one, that rather than being explicitly bound and repressed by miRNAs, Gpdh expression relies on their action upon an upstream Gpdh-antagonist; or two, that Gpdh may come under the regulation of another class of miRNA-like elements called mirtrons, which do not require pasha to be processed into their functional form. The preliminary findings in this study further highlights the imperative nature of miRNAs in regulating metabolic processes and subsequently, ensuring proper organismal development and its continued survival.


 


Enzim Glycerol-3-phosphate dehydrogenase (Gpdh) dalam Drosophila memainkan peranan yang aktif dalam berbilang laluan, termasuk laluan metabolik gliserol dan kitaran alfa-gliserofosfat. Ia juga penting untuk metabolisma etanol, dan juga perkembangan otot penerbangan. Tahun-tahun kebelakangan ini telah mendedahkan RNA kecil sebagai pengatur pasca transkripsi utama bagi pelbagai metabolik-jalur gen. Daripada pelbagai jenis RNA, RNA mikro (miRNA) adalah yang paling banyak dikaitkan dan difahami dengan baik. Walau bagaimanapun, peranan yang didapati dalam mengawal Gpdh tidak pernah ditunjukkan dalam mana-mana organisma model. Dalam kajian ini, ketegangan pasha-mutan D. melanogaster didapati hanya menyatakan 25% daripada tahap Gpdh yang tipikal dari rakan-rakan jenis liar mereka. Mutan tersebut tidak mempunyai keupayaan untuk menghasilkan pasha, protein yang penting semasa pemprosesan miRNA, dan akibatnya tidak menghasilkan miRNA yang matang. Oleh sebab peraturan-peraturan yang berorientasi miRNA seringkali memuncak dalam penumpukan sasaran mereka, pengunduran Gpdh yang seragam yang diamati dengan ketiadaan mereka di sini merujuk kepada dua kemungkinan: satu, yang bukannya secara jelas terikat dan ditindas oleh miRNA, ekspresi Gpdh bergantung kepada tindakan mereka antagonis Gpdh hulu; atau dua, bahawa Gpdh mungkin berada di bawah peraturan kelas lain seperti miRNA yang dikenali sebagai mirtron, yang tidak memerlukan pasha diproses menjadi bentuk fungsinya. Penemuan awal dalam kajian ini seterusnya menonjolkan sifat penting miRNA dalam mengawal proses metabolik dan seterusnya, memastikan pembangunan organisma yang betul dan kelangsungan hidupnya yang berterusan.


Article Details

How to Cite
Reduced Expression of Glycerol-3-phosphate dehydrogenase (Gpdh) in Drosophila melanogaster Pasha-Mutants Suggests a miRNA-dependency in its Regulation. (2019). Tropical Life Sciences Research, 30(2), 191–200. https://doi.org/10.21315/tlsr2019.30.2.14
Section
Short Communication

References

Ambros V. (2004). The functions of animal microRNAs. Nature 431: 350–355. https://doi.org/10.1038/nature02871

Azlan A, Dzaki N and Azzam G. (2016). Argonaute: The executor of small RNA function. Journal of Genetics and Genomics 43(8): 481–494. https://doi.org/10.1016/j.jgg.2016.06.002

Azzam G and Liu J L. (2013). Only one isoform of drosophila melanogaster CTP synthase forms the cytoophidium. PLoS Genetics 9: e1003256. https://doi.org/10.1371/journal.pgen.1003256

Berdnik D, Fan A P, Potter C J and Luo L. (2008). MicroRNA processing pathway regulates olfactory neuron morphogenesis. Current Biology 18: 1754–1759. https://doi.org/10.1016/j.cub.2008.09.045

Carmon A and MacIntyre R. (2010). The glycerophosphate cycle in drosophila melanogaster VI. structure and evolution of enzyme paralogs in the genus drosophila. Journal of Heredity 101: 225–234. https://doi.org/10.1093/jhered/esp111

Denli A M, Tops B B J, Plasterk R H A, Ketting R F and Hannon G J. (2004). Processing of primary microRNAs by the microprocessor complex. Nature 432: 231–235. https://doi.org/10.1038/nature03049

Geer B W, Heinstra P W H and McKechnie S W. (1993). The biological basis of ethanol tolerance in Drosophila. Comparative Biochemistry and Physiology - Part B Biochemistry 105: 203–229. https://doi.org/10.1016/0305-0491(93)90221-P

Geer B W, McKechnie S W and Langevin M L. (1983). Regulation of sn-glycerol-3-phosphate dehydrogenase in Drosophila melanogaster larvae by dietary ethanol and sucrose. Journal of Nutrition 113: 1632–1642.

Gregory R I, Yan K-P, Amuthan G, Chendrimada T, Doratotaj B, Cooch N and Shiehattar R. (2004). The microprocessor complex mediates the genesis of microRNAs. Nature 432: 235–240. https://doi.org/10.1038/nature03120

Grell E H. (1967). Electrophoretic variants of e-glycerophosphate dehydrogenase in Drosophila melanogaster. Science 158: 1319.

Harding J W, Pyeritz E A, Copeland E S and White H B. (1975). Role of glycerol 3-phosphate dehydrogenase in glyceride metabolism. Biochemical Journal 146: 223–229.

Hyun S, Lee J H, Jin H, Nam J, Namkoong B, Lee G, Chung J and Kim V N. (2009). Conserved MicroRNA miR-8/miR-200 and its target USH/FOG2 control growth by regulating PI3K. Cell 139(6): 1096–1108.

Jin H, Kim V N and Hyun S. (2012). Conserved microRNA miR-8 controls body size in response to steroid signaling in Drosophila. Genes & Development 26(13): 1427–1432.

Kheradpour P, Stark A, Roy S and Kellis M. (2007). Reliable prediction of regulator targets using 12 Drosophila genomes. Genome Research 17: 1919–1931.

Lewis B P, Shih I H, Jones-Rhoades M W, Bartel D P and Burge C B. (2003). Prediction of mammalian microRNA targets. Cell 115: 787–798. https://doi.org/10.1016/S0092-8674(03)01018-3

Liu J L. (2010). Intracellular compartmentation of CTP synthase in Drosophila. Journal of Genetics and Genomics 37: 281–296. https://doi.org/10.1016/S1673-8527(09)60046-1

Lund E, Güttinger S, Calado A, Dahlberg J E and Kutay U. (2004). Nuclear export of microrna precursors. Science 303(5654): 95–98. https://doi.org/10.1126/science.1090599

Lyu Y, Shen Y, Li H, Chen Y, Guo L, Zhao Y, Hungate E, Shi S, Wu C and Tang T. (2014). New microRNAs in Drosophila: Birth, death and cycles of adaptive evolution. PLOS Genetics 10(1): e1004096. https://doi.org/10.1371/journal.pgen.1004096

Mallory A and Vaucheret H. (2010). Form, function, and regulation of ARGONAUTE proteins. Plant Cell 22: 3879–3889. https://doi.org/10.1105/tpc.110.080671

Martin R, Smibert P, Yalcin A, Tyler D M, Schäfer U, Tuschl T and Lai E C. (2009). A Drosophila pasha mutant distinguishes the canonical microRNA and mirtron pathways. Molecular and Cellular Biology 29: 861–870. https://doi.org/10.1128/MCB.01524-08

Nevoight E and Stahl U. (1996). Reduced pyruvate decarboxylase and increased glycerol3-phosphate dehydrogenase [NAD+] levels enhance glycerol production in Saccharomyces cerevisiae. Yeast 12(13): 1331–1337.

Okamura K, Hagen J W, Duan H, Tyler D M and Lai E C. (2007). The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell 130(1): 89–100. https://doi.org/10.1016/j.cell.2007.06.028

Place R F, Li L-C, Pookot D, Noonan E J and Dahiya R. (2008). MicroRNA-373 induces expression of genes with complementary promoter sequences. Proceeding of the National Academy of Sciences of the United States of America 105(5): 1608–1613. https://doi.org/10.1073/pnas.0707594105

Ruby J G, Jan C H and Bartel D P. (2007). Intronic microRNA precursors that bypass Drosha processing. Nature 448: 83–86. https://doi.org/10.1038/nature05983

Sullivan D T, MacIntyre R, Fuda N, Fiori J, Barrilla J and Ramizel L. (2003). Analysis of glycolytic enzyme co-localization in Drosophila flight muscle. Journal of Experimental Biology 206: 2031–2038. https://doi.org/10.1242/jeb.00367

Tomari Y, Du T and Zamore P D. (2007). Sorting of Drosophila small silencing RNAs. Cell 130: 299–308. https://doi.org/10.1016/j.cell.2007.05.057

Varghese J and Cohen S M. (2007). MicroRNA miR-14 acts to modulate a positive autoregulatory loop controlling steroid hormone signaling in Drosophila. Genes & Development 21(18): 2277–2282.

Varghese J, Lim S F and Cohen S M. (2010). Drosophila miR-14 regulates insulin production and metabolism through its target, sugarbabe. Genes & Development 24(24): 2748–2753.

Vasudevan S and Tong Y C and Steitz J A. (2007). Switching from repression to activation: MicroRNAs can up-Rregulate translation. Science 318: 1931–1934. https://doi.org/10.1126/science.1149460

von Kalm L, Weaver J, DeMarco J, MacIntyre R J and Sullivan D T. (1989). Structural characterization of the alpha-glycerol-3-phosphate dehydrogenase-encoding gene of Drosophila melanogaster. Proceeding of the National Academy of Sciences of the United States of America 86: 5020–5024.

Wightman P J, Jackson G R and Dipple K M. (2013). Disruption of glycerol metabolism by RNAi targeting of genes encoding glycerol kinase results in a range of phenotype severity in Drosophila. PLoS One 8(9): e71664. https://doi.org/10.1371/journal.pone.0071664

Wojtas K, Slepecky N, von Kalm L and Sullivan D. (1997). Flight muscle function in Drosophila requires colocalization of glycolytic enzymes. Molecular Biology of the Cell 8: 1665–1675.

Wright D A and Shaw C R. (1969). Genetics and ontogeny of – Glycerophosphate Dehydrogenase isozymes in Drosophila melanogaster. Biochemical Genetics 3(4): 343–353. https://doi.org/10.1007/BF00485718

Zaragosi L-E, Wdziekonski B, Brigand K, Villageois P, Mari B, Waldmann R, Dani C and Barbry P. (2011). Small RNA sequencing reveals miR-642a-3p as a novel adipocytespecific microRNA and miR-30 as a key regulator of human adipogenesis. Genome Biology 12: R64. https://doi.org/10.1186/gb-2011-12-7-r64