Molecular Sexing of Southeast Asian Barn Owl, Tyto alba javanica, using Blood and Feather

Main Article Content

Shakinah Ravindran
Wai Kan Woo
Safwan Saufi
Wan Nur Amni
Noor Hisham Hamid
Cik Mohd Rizuan Zainal Abidin
Intan Ishak
Ghows Azzam
Hasber Salim

Abstract


Sexing of birds is important for ecology and evolutionary biology studies, as well as breeding and conservation programs especially for sexually monomorphic birds. As for barn owls, Tyto alba, confirmation of sex is important for conservation as well as introduction programs to control rodent pest populations. Molecular sexing of Southeast Asian subspecies, Tyto alba javanica was carried out using Polymerase Chain Reaction (PCR) amplification followed by 3% agarose gel electrophoresis. Primers P2/P8 and 2550F/2718R for the amplification of CHD gene (Chromo Helicase DNA-binding gene) were tested and both gave successful results. 2550F/2718R primer set gave better results as the gap between double bands was larger. DNA extracted from blood, whole diluted blood, and DNA extracted from feathers was used to molecularly sex owls. DNA extracted from feather gave the least effective results owing to contamination and low DNA concentration, while sexing owls using direct whole diluted blood provided a cost and time effective method. Sequencing of CHD gene from Tyto alba javanica showed 98% to 99% similarity in identity when compared to CHD gene of Tyto alba alba.


 



Penentuan jantina burung adalah penting untuk tujuan kajian ekologi dan biologi evolusi, serta program pembiakan dan konservasi terutamanya bagi burung yang mempunyai ciri monomorfik. Bagi burung pungguk jelapang Tyto alba, pengesahan jantina adalah penting untuk konservasi serta program pengenalan bagi kawalan tikus perosak. Penentuan jantina secara molekular untuk subspesies Asia Tenggara, Tyto alba javanica, telah dijalankan menggunakan Reaksi Rantai Polimerase (PCR) diikuti 3% gel agaros elektroforesis. Primer P2/P8 and 2550F/2718R untuk amplifikasi gen CHD (Chromo Helicase DNA-binding gene) diuji dan kedua-dua set primer memberi keputusan yang berjaya. Set primer 2550F/2718R memberi hasil yang lebih baik kerana jurang di antara jalur berganda lebih terang. DNA yang diekstrak dari darah, darah yang dicairkan, serta DNA yang diekstrak dari bulu burung digunakan untuk menentukan jantina burung. DNA yang diekstrak dari bulu memberi keputusan yang kurang memuaskan akibat pencemaran serta kuantiti DNA yang rendah. Penentuan jantina menggunakan darah yang dicairkan merupakan kaedah yang menjimatkan kos serta masa. Penjujukan gen CHD dari Tyto alba javanica menunjukkan 98% hingga 99% kesamaan identiti bila dibandingkan gen CHD Tyto alba alba.



Article Details

How to Cite
Molecular Sexing of Southeast Asian Barn Owl, Tyto alba javanica, using Blood and Feather . (2019). Tropical Life Sciences Research, 30(2), 13–23. https://doi.org/10.21315/tlsr2019.30.2.2
Section
Original Article

References

Brubaker J L, Karouna-Renier N K, Chen Y, Jenko K, Sprague D T, and Henry P F P. (2011). A noninvasive, direct real-time PCR method for sex determination in multiple avian species. Molecular Ecology Resources 11(2): 415–417. https://doi.org/10.1111/j.1755-0998.2010.02951.x

Bu Y, Huang H and Zhou G. (2008). Direct polymerase chain reaction (PCR) from human whole blood and filter-paper-dried blood by using a PCR buffer with a higher pH. Analitical Biochemistry 375(2): 370–372. https://doi.org/10.1016/j.ab.2008.01.010

Dubiec A and Zagalska-Neubauer M. (2006). Molecular techniques for sex identification in 3 birds. Biology Letters 43(1): 3–12.

Ellegren H. (1996). First gene on the avian W chromosome (CHD) provides a tag for universal sexing on non-ratite birds. Proceedings. Biological Sciences/The Royal Society 263(1377): 1635–1641. https://www.ncbi.nlm.nih.gov/pubmed/9025311 (accessed on 15 November 2017). https://doi.org/10.1098/rspb.1996.0239

Fridolfsson A and Ellegren H. (1999). A simple and universal method for molecular sexing of non-ratite birds. Journal of Avian Biology 30(1): 116–121. https://doi.org/10.2307/3677252

Fridolfsson A K, Cheng H, Copeland N G, Jenkins N A, Liu H C, Raudsepp T, Woodage T, Chowdhary B, Halverson J and Ellegren H. (1998). Evolution of the avian sex chromosomes from an ancestral pair of autosomes. Proceedings of the National Academy of Sciences of the United States of America 95(14): 8147–8152. https://www.ncbi.nlm.nih.gov/pubmed/9653155 (accessed on 20 November 2017). https://doi.org/10.1073/pnas.95.14.8147

Gábor M, Miluchová M, Trakovická A, Hrn C, and Radosová E. (2014). Sex determination of superorder Neognathae (class Aves) by molecular genetics. Methods 47(1): 69–72.

Ghorpade P B, Gupta P K, Prakash V, Cuthbert R J, Kulkarni M, Prakash N, Das A, Sharma A K and Saini M. (2012). Molecular sexing of threatened Gyps vultures: an important strategy for conservation breeding and ecological studies. SpringerPlus 1: 62. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3540358/ (accessed 20 November 2017). https://doi.org/10.1186/2193-1801-1-62

Grant A. (2001). DNA sexing of brown kiwi (Apteryx mantelli) from feather samples. DOC Science Internal Series 13. Department of Conservation, Wellington, New Zealand.

Griffiths R, Daan S and Dijkstra C. (1996). Sex identification in birds using two CHD genes. Proceedings. Biological Sciences/The Royal Society 263(1374): 1251–1256. https://www.ncbi.nlm.nih.gov/pubmed/8858876 (accessed 15 November 2017). https://doi.org/10.1098/rspb.1996.0184

Griffiths R, Double M C, Orr K and Dawson R J G. (1998). A DNA test to sex more birds. Molecular Ecology 7(8): 1071–1075. https://doi.org/10.1046/j.1365-294x.1998.00389.x

Harvey M G, Bonter D N, Stenzler L M and Lovette I J. (2006). A comparison of plucked feathers versus blood samples as DNA sources for molecular sexing. Journal of Field Ornithology 77(2): 136–140. https://doi.org/10.1111/j.1557-9263.2006.00033.x

He X-L, Qing B-P, Han J-L and Ding C-Q. (2013). Improved molecular assay for sex identification of the endangered crested ibis (Nipponia nippon) based on the CHD1 gene and a sex-linked microsatellite locus. Zoological Science 30(9): 742–747. https://www.ncbi.nlm.nih.gov/pubmed/24004080 (accessed 2 December 2017). https://doi.org/10.2108/zsj.30.742

Idaghdour Y, Broderick D and Korrida A. (2003). Faeces as a source of DNA for molecular studies in a threatened population of great bustards. Conservation Genetics 4(6): 789–792. https://doi.org/10.1023/B:COGE.0000006110.03529.95

Jensen T, Pernasetti F M and Durrant B. (2003). Conditions for rapid sex determination in 47 avian species by PCR of genomic DNA from blood, shell-membrane blood vessels, and feathers. Zoo Biology 22(6): 561–571. https://doi.org/10.1002/zoo.10101

Kesler D C, Lopes I F and Haig S M. (2006). Sex determination of Pohnpei Micronesian Kingfishers using morphological and molecular genetic techniques. Journal of Field Ornithology 77(2): 229–232. https://doi.org/10.1111/j.1557-9263.2006.00045.x

Khaerunnisa I, Sari E, Ulfah M, Jakaria J and Sumantri C. (2013). Avian sex determination based on chromo helicase DNA-binding (CHD) genes using polymerase chain reaction (PCR). Media Peternakan 36: 85–90. http://medpet.journal.ipb.ac.id/index.php/mediapeternakan/article/view/7179 (accessed 27 November 2017).

Malagó W, Franco H M, Matheucci E, Medaglia A and Henrique-Silva F. (2002). Large scale sex typing of ostriches using DNA extracted from feathers. BMC Biotechnology 2: 19. https://doi.org/10.1186/1472-6750-2-19

McDonald P G and Griffith S C. (2011). To pluck or not to pluck: The hidden ethical and scientific costs of relying on feathers as a primary source of DNA. Journal of Avian Biology 42(3): 197–203. https://doi.org/10.1111/j.1600-048X.2011.05365.x

Mercier B, Gaucher C, Feugeas O and Mazurier C. (1990). Direct PCR from whole blood, without DNA extraction. Nucleic Acids Research 18(19): 5908. https://doi.org/10.1093/nar/18.19.5908

Morinha F, Cabral J A and Bastos E. (2012). Molecular sexing of birds: A comparative review of polymerase chain reaction (PCR)-based methods. Theriogenology, 78(4): 703–714.

Pitzer S, Hull J, Ernest H B and Hull A C. (2008). Sex determination of three raptor species using morphology and molecular techniques. Journal of Field Ornithology 79(1): 71–79. https://doi.org/10.1111/j.1557-9263.2008.00147.x

Rudnick J A, Katzner T E, Bragin E A and DeWoody J A. (2007). Species identification of birds through genetic analysis of naturally shed feathers. Molecular Ecology Notes 7(5): 757–762. https://doi.org/10.1111/j.1471-8286.2007.01796.x

Taberlet P, Luikart G and Waits L P. (1999). Noninvasive genetic sampling: Look before you leap. Trends in Ecology and Evolution, 14(8): 323–327. Taylor I. (1994). Barn owls: Predator-prey relationships and conservation. Cambridge: Cambridge University Press.

Wang Y, Prosen D E, Mei L, Sullivan J C, Finney M and Vander Horn P B. (2004). A novel strategy to engineer DNA polymerases for enhanced processivity and improved performance in vitro. Nucleic Acids Research 32(3): 1197–1207. https://doi.org/10.1093/nar/gkh271

Wong Y L J. (2005). Screening on suspected secondary rodenticide poisoning by determination of coagulation times in barn owls (Tyto alba) in Tanjung Karang, Selangor. Final year project of Doctor of Veterinary Medicine (D.V.M.), Universiti Putra Malaysia.