Biochemical Properties and Potential Application of Proteases from Alkalophilic Bacillus lehensis G1

Main Article Content

Noorul Aini Sulaiman
Nor Muhammad Mahadi
Nur Zazarina Ramly

Abstract

The biochemical properties of extracellular proteases enzymes from Malaysia Alkalophilic’s bacteria, Bacillus lehensis G1, were investigated. The secreted enzymes were tested on 2% of skim milk agar. Results demonstrated that the enzyme could maintain the activity up to 60°C within an extensive range of pH from 3 to 11 with the optimal pH and temperature of 7.0 and 40°C, respectively. The proteases activity were also observed to be increased in the presence of several ions such as Mn2+, Fe2+, Cu2+, Mg2+ and Co2+. Whilst, the enzyme activity was marginally inhibited with the addition of Ca2+, K+ and Ni2+ with the residual activity of 85%, 81%, and 75%, respectively. Furthermore, the extracellular proteases have shown to be compatible with several Malaysia commercial liquid detergents, which could be beneficial for stain removal. The potential application of proteases in gelatine decomposition from used X-ray films was also determined in this article.



Pencirian enzim ekstraselular protease daripada bakteria Alkalophilic Bacillus lehensis G1 dari Malaysia telah dikaji. Enzim protease yang dirembeskan diuji pada agar susu skim 2%. Keputusan menunjukkan protease ekstraselular mampu mengekalkan aktiviti sehingga suhu 60°C di dalam julat pH yang luas iaitu 3 hingga 11 dengan suhu optimum pada 40°C dan pH optimum pada 7.0. Aktiviti enzim juga diperhatikan akan meningkat dengan penambahan beberapa ion iaitu Mn2+, Fe2+, Cu2+, Mg2+ dan Co2+. Manakala aktiviti protease didapati sedikit direncat dengan kehadiran ion Ca2+, K+ dan Ni2+ dengan baki aktiviti sebanyak 85%, 81% dan 75%. Protease ekstraselular juga didapati serasi dengan beberapa cecair detergen komersial dari Malaysia, yang menunjukkan protease ini boleh dimanfaatkan sebagai pembersih kotoran pada pakaian. Selain itu, potensi kegunaan protease yang dihasilkan oleh B. lehensis G1 ke atas penguraian gelatin dari filem X-ray yang telah digunakan juga telah dilakukan di dalam kajian ini.

Article Details

How to Cite
Biochemical Properties and Potential Application of Proteases from Alkalophilic Bacillus lehensis G1. (2019). Tropical Life Sciences Research, 30(2), 25–37. https://doi.org/10.21315/tlsr2019.30.2.3
Section
Original Article

References

Anbu P. (2013). Characterization of solvent stable extracellular protease from Bacillus koreensis BK-P21A. International Journal of Biological Macromolecules 56: 162–168. https://doi.org/10.1016/j.ijbiomac.2013.02.014

Anbu P, Gopinath S C B, Chaulagain B P and Lakshmipriya T. (2015). Microbial enzymes and their applications in industries and medicine 2014. BioMed Research International 2015: 1–3. https://doi.org/10.1155/2017/2195808

Bajaj B K and Jamwal G. (2013). Thermostable alkaline protease production from Bacillus pumilus D-6 by using agro-residues as substrates. Advances in Enzyme Research 1(2): 30–36. https://doi.org/10.4236/aer.2013.12003

Bajaj B K, Sharma N and Singh S. (2013). Enhanced production of fibrinolytic protease from Bacillus cereus NS-2 using cottonseed cake as a nitrogen source. Biocatalysis and Agricultural Biotechnology 2(3): 204–209. https://doi.org/10.1016/j.bcab.2013.04.003

Baweja M, Tiwari R, Singh P K, Nain L and Shukla P. (2016). An alkaline protease from Bacillus pumilus MP 27: Functional analysis of its binding model toward its applications as a detergent additive. Frontiers in Microbiology 7: 1–14. https://doi.org/10.3389/fmicb.2016.01195

Benkiar A, Jaouadi Z, Badis A, Rebzani F, Touioui B, Rekik H, Naili B, Zohra F, Bejar S and Jaouadi B. (2013). International biodeterioration biodegradation biochemical and molecular characterization of a thermo- and detergent-stable alkaline serine keratinolytic protease from Bacillus Circulans Strain DZ100 for detergent formulations and feather-biodegradation. International Biodeterioration Biodegradation 83: 129–138. https://doi.org/10.1016/j.ibiod.2013.05.014

Bholay A D, More S Y, Patil V B and Niranjan P. (2012). Bacterial extracellular alkaline proteases and its industrial applications. International Research Journal of Biological Sciences 1(7): 1–5.

Blanco K C, de Lima C J B, Monti R and Jr J M. (2012). Bacillus lehensis – an alkali-tolerant bacterium isolated from cassava starch wastewater : Optimization of parameters for cyclodextrin glycosyltransferase production. Annals of Microbiology 62(1): 329–337. https://doi.org/10.1007/s13213-011-0266-x

Bratanis E, Molina H, Naegeli A, Collin M and Lood R. (2017). BspK, a serine protease from the predatory bacterium Bdellovibrio bacteriovorus with utility for analysis of therapeutic antibodies. Applied and Environmental Microbiology 83(4): 1–16. https://doi.org/10.1128/AEM.03037-16

Cihan A, Tekin N, Ozcan B and Cokmus C. (2012). The genetic diversity of genus Bacillus and the related genera revealed by 16S rRNA gene sequences and ardra analyses isolated from geothermal regions of Turkey. Brazilian Journal of Microbiology 43(1): 309–324. https://doi.org/10.1590/S1517-83822012000100037

Esakkiraj P, Meleppat B, Lakra A K, Ayyanna R and Arul V. (2016). Cloning, expression, characterization, and application of protease produced by Bacillus cereus PMW8. RSC Advances 6: 38611–38616. https://doi.org/10.1039/C5RA27671C

Hii K L, Yeap S P and Mashitah M D. (2012). Cellulase production from palm oil mill effluent in Malaysia: Economical and technical perspectives. Engineering in Life Sciences 12(1): 7–28. https://doi.org/10.1002/elsc.201000228

Jayakumar R, Jayashree S, Annapurna B and Seshadri S. (2012). Characterization of thermostable serine alkaline protease from an alkaliphilic strain Bacillus pumilus MCAS8 and its Applications. Applied Biochemistry and Biotechnology 168(7): 1849–1866. https://doi.org/10.1007/s12010-012-9902-6

Jisha V, Smitha R, Pradeep S, Sreedevi S, Unni K, Sajith S, Priji P, Josh M S and Benjamin S. (2013). Versatility of microbial proteases. Advances in Enzyme Research 1(3): 39–51. https://doi.org/10.4236/aer.2013.13005

Joshi S and Satyanarayana T. (2013). Characteristics and applications of a recombinant alkaline serine protease from a novel bacterium Bacillus lehensis. Bioresource Technology 131: 76–85. https://doi.org/10.1016/j.biortech.2012.12.124

Lagzian M and Asoodeh A. (2012). An extremely thermotolerant, alkaliphilic subtilisinlike protease from hyperthermophilic Bacillus sp. MLA64. International Journal of Biological Macromolecules 51(5): 960–967. https://doi.org/10.1016/j. ijbiomac.2012.08.009

Lakshmi B K M and Hemalatha K P J. (2016). Eco-friendly recovery of silver from used X-ray films by an alkaline protease of Bacillus Cereus strain S8. Frontiers in Environmental Microbiology 2(6): 45–48. https://doi.org/10.11648/j.fem.20160206.14

Li Q, Yi L, Marek P and Iverson B L. (2013). Commercial proteases: Present and future. FEBS Letters 587(8): 1155–1163. https://doi.org/10.1016/j.febslet.2012.12.019

Liang T W, Hsieh J L and Wang S L. (2012). Production and purification of a protease, a chitosanase, and chitin oligosaccharides by Bacillus cereus TKU022 fermentation. Carbohydrate Research 362: 38–46. https://doi.org/10.1016/j.carres.2012.08.004

Luo X, Chen L, Huang Q, Zheng, J, Zhou W, Peng D, Ruan L and Sun M. (2013). Bacillus thuringiensis metalloproteinase Bmp1 functions as a nematicidal virulence factor. Applied and Environmental Microbiology 79(2): 460–468. https://doi.org/10.1128/AEM.02551-12

Olajuyigbe F M and Falade A M. (2014). Purification and partial characterization of serine alkaline metalloprotease from Bacillus brevis MWB-01. Bioresources and Bioprocessing 1(8): 1–10. https://doi.org/10.1186/s40643-014-0008-6

Ou J F and Zhu M J. (2012). An overview of current and novel approaches for microbial neutral protease improvement. International Journal of Modern Biology and Medicine 2(1): 1–31.

Parpalliwar J P, Patil P S, Patil I D and Deshannavar U B. (2015). Extraction of silver from waste x-ray films using protease enzyme. International Journal of Advanced Biotechnology and Research 6(2): 220–226.

Pathak A P and Deshmukh K B. (2012). Alkaline protease production, extraction, and characterization from alkaliphilic Bacillus licheniformis KBDL4: A Lonar soda lake isolate. Indian Journal of Experimental Biology 50(8): 569–576.

Ray A. (2012). Protease enzyme: Potential industrial scope. International Journal of Technology 2(1): 1–5.

Saleem M, Rehman A, Yasmin R and Munir B. (2012). Biochemical analysis and investigation on the prospective applications of alkaline protease from a Bacillus cereus strain. Molecular Biology Reports 39(6): 6399–6408. https://doi.org/10.1007/s11033-011-1033-6

Singh S K, Singh S K, Tripathi V R and Garg S K. (2012). Purification, characterization and secondary structure elucidation of a detergent stable, halotolerant, thermoalkaline protease from Bacillus cereus SIU1. Process Biochemistry 47(10): 1479–1487. https://doi.org/10.1016/J.PROCBIO.2012.05.021

Sulaiman N A, Mahadi N M and Ramly N Z. (2017). Identification of proteolytic genes from Bacillus lehensis G1. Journal of Engineering and Science Research 1(2): 14–20. https://doi.org/10.26666/rmp.jesr.2017.2.3

Wang J, Xu A, Wan Y and Li Q. (2013). Purification and characterization of a new metalloneutral protease for beer brewing from Bacillus amyloliquefaciens SYB-001. Applied Biochemistry and Biotechnology 170(8): 2021–2033.