Genetic Diversity of the Haliotis diversificolor squamata from Southern Coastal Java (Banten, Pangandaran and Alas Purwo) and Bali Based on Mitochondrial CO1 Sequences

Main Article Content

Syamsul Bachry
Dedy Solihin
Rudhy Gustiano
Kadarwan Soewardi
Nurlisa Butet

Abstract

The morphology of Haliotis genus is very difficult to distinguish because of its high similarity. Therefore, an identification tool such as genetics is needed to distinguish the genus. This study describes molecular characters of a species of Haliotis (Mollusca: Gastropoda: Haliotidae) from the southern Java and Bali waters, Indonesia, that is currently considered to be a subspecies of another occurring in China, Taiwan and Japan. DNA of Haliotis specimens collected from southern Java and Bali waters was extracted from epipodial tissues using a DNeasy® Blood and Tissue Kit, and partial CO1 genes amplified using AB-CO1DivF and AB-CO1DivR primers. Genetic distances were determined by Kimura 2-parameter, and phylogenetic trees constructed using the Neighbor-joining method in MEGA 5.0 software. Based on the genetic distance using the COI mtDNA gene as a barcoding species, the difference was 15.9%–16.7% with H. diversicolor superteksta from China, H. diversicolor from Taiwan (7.73%–9.12%), and H. diversicolor from Japan (7.80%–9.20%), because of boundary for determining species groups based on of 4% and mollusks at 4.8%, then H. diversicolor squamata spread in the southern islands of Java and Bali is worthy of being separated into its own species. From the results of this study, we propose that abalone from the south of Java and Bali waters became a separate species, H. squamata Reeve 1846. While percentage difference in interpopulation genetic distance from Java and Bali about 0.000%–0.011% or 0.0%–0.11%, averaging 0.60%.

Article Details

How to Cite
Genetic Diversity of the Haliotis diversificolor squamata from Southern Coastal Java (Banten, Pangandaran and Alas Purwo) and Bali Based on Mitochondrial CO1 Sequences. (2019). Tropical Life Sciences Research, 30(3), 83–93. https://doi.org/10.21315/tlsr2019.30.3.6
Section
Original Article

References

An H S, Jee Y J, Min K S, Kim B L and Han S J. (2005). Phylogenetic analysis of six species of pacific abalone (Haliotidae) based on DNA sequences of 16s rRNA and cytochrome c oxidase subunit I mitochondrial genes. Marine Biotechnology 7(4): 373–380. https://doi.org/10.1007/s10126-004-4405-2

Arlyza I S, Shen K N, Solihin D D, Soedharma D, Berrebi P and Borsa P. (2013). Species boundaries in the Himantura uarnak species complex (Myliobatiformes: Dasyatidae). Molecular Phylogenetics and Evolution 66(1): 429–435. https://doi.org/10.1016/j.ympev.2012.09.023

Borsa P. (2002). Allozyme, mitochondrial-DNA, and morphometric variability indicate cryptic species of anchovy (Engraulis encrasicolus). Biological Journal of the Linnean Society 75(2): 261–269. https://doi.org/10.1046/j.1095-8312.2002.00018.x

Brower A V Z. (1994). Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial DNA evolution. Proceedings of the National Academy of Sciences of the United States of America 91(14): 6401–6495. https://doi.org/10.1073/pnas.91.14.6491

Burton R S and Tegner M J. (2000). Enhancement of red abalone Haliotis rufescens stocks a San Miguel Island: Reassessing a success story. Marine Ecology Progress Series 202: 303–308. https://doi.org/10.3354/meps202303

Cox A J and Hebert P D N. (2003). Colonization, extinction, and phylogeographic patterning in a freshwater crustacean. Molecular Ecology 10(2): 371–386. https://doi.org/10.1046/j.1365-294x.2001.01188.x

Dharma B. (2009). Moluska unggulan Indonesia sebagai sumber pangan. In: F Yulianda, N T M Pratiwi, Y Mayalanda and M R Cordova (eds.). Seminar Nasional Moluska 2 “Moluska: Peluang bisnis dan konservasi”. Institut Pertanian Bogor, Bogor, 11–12 February 2009.

___. (1988). Siput dan kerang Indonesia (Indonesian shell). Jakarta: Sarana Graha.

Feng D, Chen D, Peckmann J and Bohrmann G. (2010). Authigenic carbonates from methane seeps of the northern Congo fan: Microbial formation mechanism. Marine and Petroleum Geology 27(4): 748–756. https://doi.org/10.1016/j.marpetgeo.2009.08.006

Geiger D L. (1999). Distribution and biogeography of the recent Haliotidae (Gastropoda: Vetigastropoda) world-wide. Bollettino Malacologico 35: 57–120.

Gruenthal K M and Burton R S. (2008). Genetic structure of natural populations of the California black abalone (Haliotis cracherodii Leach, 1814), a candidate for endangered species status. Journal of Experimental Marine Biology and Ecology 355(1): 47–58. https://doi.org/10.1016/j.jembe.2007.11.013

___. (2005). Genetic diversity and species identification in the endangered white abalone (Haliotis sorenseni). Conservation Genetics 6(6): 929–939. https://doi.org/10.1007/s10592-005-9079-4

Halt M N, Kupriyanova E K, Cooper S J B and Rouse G W. (2009). Naming species with no morphological indicators: Species status of Galeolaria caespitosa (Annelida: Serpulidae) inferred from nuclear and mitochondrial gene sequences and morphology. Invertebrate System 23(3): 205–222. https://doi.org/10.1071/IS09003

Hebert P D N, Penton E H, Burns J M, Janzen D H and Hallwachs W. (2004). Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proceedings of the National Academy of Sciences of the United States of America 101(41): 14812–14817. https://doi.org/10.1073/pnas.0406166101

Hebert P D N, Ratnasingham S and deWaard J R. (2003). Barcoding animal life: Cytochrome c oxidase subunit 1 divergences among closely related species. The Royal Society 270(Suppl. 1): S96–S99. https://doi.org/10.1098/rsbl.2003.0025

Hsu T-H and Gwo J-C. (2017). Genetic diversity and stock identification of small abalone (Haliotis diversicolor) in Taiwan and Japan. PLOS ONE 12(6): e0179818. https://doi.org/10.1371/journal.pone.0179818

Hubert N, Kadarusman, Wibowo A, Busson F, Caruso D, Sulandari S, Nafqoh N et al. (2015). DNA barcoding Indonesia freshwater fishes: Challenges and prospect. DNA Barcodes 3: 144–169.

Hutama A, Dahruddin H, Busson F, Sauri S, Keith P, Hadiaty R K, Hanner R et al. (2017). Identifying spatially concordant evolutionary significant units across multiple species through DNA barcodes: Application to the conservation genetics of the freshwater fishes of Java and Bali. Global Ecology and Conservation 12(2017): 170–187.

Kong L and Qi L. (2009). Genetic evidence for the existence of cryptic species in an endangered clam Coelomactra antiquata. Marine Biology 156(7): 1507–1515. https://doi.org/10.1007/s00227-009-1190-5

Knowlton N and Weigt L A. (1998). New dates and new rates for divergence across the Isthmus of Panama. The Royal Society 265(1412): 2257–2263. https://doi.org/10.1098/rspb.1998.0568

Liu X, Wu F, Zhao H, Zhang G and Guo X. (2009). A novel shell color variant of the pacific Abalone Haliotis discus hannai Ino subject to genetic control and dietary influence. Journal of Shellfish Research 28(2): 419–424. https://doi.org/10.2983/035.028.0226

Mcshane P E, Schiel D R, Mercer S F and Murray T. (1994). Morphometric variation in Haliotis iris (Mollusca:Gastropoda): Analysis of 61 populations. Journal of Marine Freshwater Research 28(4): 357–364. https://doi.org/10.1080/00288330.1994.9516625

Ratnasingham S and Hebert P D N. (2013). A DNA-based registry for all animal species: The barcode index number (BIN) system. PLOS ONE 8(7): e66213. https://doi.org/10.1371/journal.pone.0066213

Rozen S and Skaletsky H J. (2000). Primer3 on the WWW for general users and for biologist programmers. In: S Krawetz and S Misener (eds.). Bioinformatics Methods and Protocols: Methods in Molecular Biology. Totowa, NJ: Humana Press, 365–386. https://doi.org/10.1385/1-59259-192-2:365

Setyono D. (2006). Reproductive aspects of the tropical abalone, haliotis asinina, from southern lombok waters, Indonesia. Marine Research in Indonesia 30: 1–14. https://doi.org/10.14203/mri.v30i0.420

Soelistyowati D T, Kusumawardhani A and Junior M Z. (2013). Phenotype seeds characterization on interspesific hybridization of abalone Haliotis asinina and Haliotis squamata. Indonesian Aquaculture Journal 12(1): 26–32. https://doi.org/10.19027/jai.12.25-30

Solihin D D. (1994). Peran DNA mitokondria (mtDNA) dalam studi keragaman genetik dan biologi populasi pada hewan. Hayati 1: 1–4.

Tamura K, Peterson D, Peterson N, Stecher G, Nei M and Kumar S. (2011). MEGA-5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28(10): 2731–2739. https://doi.org/10.1093/molbev/msr121

Tissot B N. (1988). Morphological variation along intertidal gradients in population of black abalone Haliotis cracherodii Leach 1841. Journal of Experimental Marine Biology and Ecology 117(1): 71–90. https://doi.org/10.1016/0022-0981(88)90071-8

Wang Z, Ho K C, Yu D H, Ke C H, Mak W Y and Chu K H. (2004). Lack of genetic divergence in nuclear and mitochondrial DNA between subspecies of two Haliotis species. Journal of Shellfish Research 23(4):1143–1146.

Wormhoudt V A, Bras Y L and Huchette S. (2009). Haliotis marmorata from Senegal, a sister species of Haliotis tuberculata: Morphological and molecular evidence. Biochemical Systematics and Ecology 37(6): 747–755. https://doi.org/10.1016/j.bse.2009.12.020

Zein A and Prawiradilaga M. (2013). DNA barcode fauna Indonesia. Jakarta: Kencana.