Temperature Influence on Emergence Success and Swimming Speed for In-Situ Nesting for Chelonia mydas in Penang Island, Malaysia
Main Article Content
Abstract
he study was performed in Penang Island, Malaysia from October 2013 to March 2015. This is the first study performed by using the in-situ incubation method, and the eggs were incubated naturally at Kerachut. As the in-situ procedure is not advisable to be performed due to risk from eggs poachers and predator disturbance, only nine nests were incubated. Three objectives were formulated: First, to determine the influence of sand temperature on the hatching success and emergence success. Second, to evaluate the effects of sand temperature on hatchlings swimming speed, and third, to observe the pattern of hatchling emergence between day-time and night-time. The result shows that there is significant correlation between hatching success and emergence success on the sand temperature, and also a significant correlation between sand temperature and swimming speed. Furthermore, the study identified that the hatchling emerges during night-time rather than day-time, and the percentage was 94.18%, 80.67% and 78.05%, based on observation from Day 1 until Day 3. The overall mean hatchlings straight carapace length was 40.80 mm ± 5.08, mean hatchlings straight carapace width was 31.78 mm ± 4.55, and mean hatchlings weight was 20.5 g ± 1.22. For future conservation, first, the sample size of in-situ nests is suggested to be increased because the result from the study provides a new knowledge, and widens the scope of the research by including the study on hatchlings locomotors performance (crawling performance and self-righting performance). Second, additional study on the relationship between surroundings water temperatures on the swimming speed performance is also suggested. This paper provides basic knowledge for the first research of in-situ nesting in Penang Island, and the recommendation may benefit the management of the Kerachut Turtle Conservation Centre.
Kajian ini dijalankan di Pulau Pinang, Malaysia dari Oktober 2013 hingga Mac 2015. Kajian dijalankan dengan menggunakan kaedah pengeraman sarang in-situ, dan telur dieram secara semulajadi di pantai Kerachut. Disebabkan kaedah in-situ tidak begitu digalakkan kerana risiko kecurian telur dan gangguan haiwan pemangsa, hanya sembilan telur dibenarkan untuk dieram. Tiga objektif telah dibentuk: pertama, kajian mengenai penentuan pengaruh suhu tanah ke atas keberjayaan penetasan, dan ke atas keberjayaan anak penyu sampai ke permukaan sarang. Kedua, kajian mengenai penilaian pengaruh suhu tanah ke atas kesan tahap kepantasan renang anak penyu, dan ketiga, kajian pantauan ke atas corak keberjayaan anak penyu sampai ke permukaan sarang di antara waktu siang dan waktu malam. Keputusan menunjukkan terdapat signifikasi korelasi di antara keberjayaan penetasan dan suhu tanah, dan di antara keberjayaan anak penyu sampai ke permukaan sarang dan suhu tanah. Di samping itu, terdapat signifikasi korelasi di antara suhu tanah dan tahap kepantasan renang anak penyu. Tambahan, kajian keberjayaan anak penyu sampai ke permukaan sarang menunjukkan bahawa anak penyu lebih terarah untuk muncul pada waktu malam berbanding waktu siang, dan peratusannya adalah 94.18%, 80.67% dan 78.05%, berdasarkan tinjauan dari hari pertama hingga hari ketiga. Purata keseluruhan panjang lurus karapas anak penyu adalah 40.80 mm ± 5.08, lebar lurus karapas anak penyu adalah 31.78 mm ± 4.55, dan berat anak penyu adalah 20.5 g ± 1.22. Untuk tujuan pemuliharaan pada masa hadapan, pertama, kami mencadangkan saiz sampel kajian sarang in-situ ditambah untuk tujuan ketepatan keputusan kerana kajian ini memberikan maklumat baru, dan meluaskan kajian dengan menambahkan kajian mengenai ciri-ciri tingkah laku lokomotor anak penyu (tahap kepantasan merangkak dan tahap kepantasan membalikkan sendiri). Kedua, kami mencadangkan kajian mengenai hubung kait di antara suhu air persekitaran dengan tahap kepantasan renang anak penyu. Kertas ini memberikan maklumat asas mengenai kajian pertama sarang in-situ di Pulau Pinang, dan cadangan yang diberikan mungkin akan memberikan kebaikan untuk tujuan pengurusan Pusat Konservasi Penyu Pantai Kerachut.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Booth D T and Evans A. (2011). Warm water and cool nests are best. How global warming might influence hatchling green turtle swimming performance. PLOS ONE 6(8): 1–7. https://doi.org/10.1371/journal.pone.0023162
Booth D T, Burgess E A, McCosker J and Lanyon J M. (2004). The influence of incubation temperature on post hatching fitness characteristics of turtles. International Congress Series 1275: 226–233. https://doi.org/10.1016/j.ics.2004.08.057
Burgess E, Booth D T and Lanyon J M. (2006). Swimming performance of hatchling green turtles is affected by incubation temperature. Coral Reefs 25(3): 341–349. https://doi.org/10.1007/s00338-006-0116-7
Chan E H. (2013). A report on the first 16 years of a long-term marine turtle conservation project in Malaysia. Asian Journal of Conservation Biology 2(2): 129–135.
Chung F C, Pilcher N J, Salmon M and Wyneken J. (2009). Offshore migratory: Activity of hawksbill turtle (eretmochelys imbricata) hatchlings, ii. Swimming gaits, swimming speed, and morphological comparisons. Chelonian Conservation and Biology 8(1): 35–42. https://doi.org/10.2744/CCB-0716.1
Deeming D C and Ferguson M W J. (1991). Physiological effects of incubation temperature on embryonic development in reptiles and birds, In: D C Deeming and M W J Ferguson (eds.). Egg incubation: It’s effects on embryonic development in birds and reptiles. Cambridge, United Kingdom: Cambridge University Press, 147–171. https://doi.org/10.1017/CBO9780511585739.011
Dehn M M. (1990). Vigilance for predators: Detection and dilution effects. Behavioral Ecology and Sociobiology 26: 337–342. https://doi.org/10.1007/BF00171099
Department of Fisheries Malaysia. (2016). Pelan tindakan pengurusan dan pemuliharaan penyu kebangsaan, Malaysia. Putrajaya: Kementerian Pertanian dan Industri Asas Tani Malaysia, 70.
Drake D L and Spotila J R. (2001). Thermal tolerances and the timing of sea turtle hatchling emergence. Journal of Thermal Biology 27(1): 71–81. https://doi.org/10.1016/S0306-4565(01)00017-1
Georges A, Beggs K, Young J E and Doody J S. (2005). Modeling reptilian development under fluctuating temperature regimes. Physiology Biochemistry Zoology 78(1): 18–30. https://doi.org/10.1086/425200
Glen F, Broderick A C, Godley B J and Hays G C. (2003). Incubation environment affects phenotype of naturally incubated green turtle hatchlings. Journal of Marine Biological Association of the United Kingdom 83(5): 1183–1186. https://doi.org/10.1017/S0025315403008464h
___. (2005). Patterns in the emergence of green (Chelonia mydas) and loggerhead (Caretta caretta) turtle hatchlings from their nests. Marine Biology 146(5): 1039–1049. https://doi.org/10.1007/s00227-004-1492-6
Gyuris E. (1993). Factors that control the emergence of green turtle hatchlings from the nest. Wildlife Research 20(3): 345–353. https://doi.org/10.1071/WR9930345
Hays C G, Broderick A C, Glen F, Godley B J, Houghton J D R and Metcalfe J D. (2002). Water temperature and inter-nesting intervals for Loggerhead (Caretta caretta) and Green (Chelonia mydas) Sea Turtles. Journal of Thermal Biology 27(5): 429–432. https://doi.org/10.1016/S0306-4565(02)00012-8
Hays G C, Fossette S, Katselidis K A, Mariani P and Schofield G. (2010). Ontogenetic development of migration: La gran-gian drift trajectories suggest a new paradigm for sea turtles. Journal of the Royal Society Interface 7(50): 1319–1327. https://doi.org/10.1098/rsif.2010.0009
Heithaus M R. (2013). Predators, prey, and the ecological roles of sea turtles. In: J Wyneken, K J Lohmann and JA Musick (eds). The biology of sea turtles, volume III. Boca Raton, FL: CRC Press, 249–284. https://doi.org/10.1201/b13895-11
Heppell S S, Crowder L B, Crouse D T, Epperly S P and Frazer N B. (2003). Population models for Atlantic loggerheads: past, present, and future. In: A B Bolten and B E Witherington (eds.), Loggerhead sea turtles. Washington DC: Smithsonian Books, 255–273.
Hill R W, Wyse G A and Anderson M. (2004). Animal physiology. Massachusetts: Sinauer Associates Inc, 762.
Hitchins P M, Bourquin O and Hitchins S. (2004). Nesting success of hawksbill turtles (Eretmochelys imbricata) on Cousine Island, Seychelles. Journal of Zoology 264(4): 383–389. https://doi.org/10.1017/S0952836904005904
Ischer T, Ireland K and Booth D T. (2009). Locomotion performance of green turtle hatchlings from the Heron Island Rookery, Great Barrier Reef. Marine Biology 156(7): 1399– 1409. https://doi.org/10.1007/s00227-009-1180-7
Kamel S J and Mrosovsky N. (2005). Repeatability of nesting preferences in the hawksbill sea turtle, Eretmochelys imbricata, and their fitness consequences. Animal Behaviour 70(4): 819–828. https://doi.org/10.1016/j.anbehav.2005.01.006
Katselidis K A, Schofield G, Dimopoulos P, Stamou G N and Pantis J D. (2012). Females first? Past, present and future variability in offspring sex-ratio at a temperate sea turtle breeding area. Animal Conservation 15(5): 508–518. https://doi.org/10.1111/j.1469-1795.2012.00543.x
Laloë J, Esteban N, Berkel J, and Hays G C. (2016). Sand temperatures for nesting sea turtles in the Caribbean: Implications for hatchling sex ratios in the face of climate change. Journal of Experimantal Marine Biology and Ecology 474: 92–99. https://doi.org/10.1016/j.jembe.2015.09.015
López-Castro M C, Carmona R and Nichols W J. (2004). Nesting characteristics of the Olive Ridley Turtle (Lepidochelys olivacea) in Cabo Pulmo, Southern Baja California. Marine Biology 145(4): 811–820.
Madden D, Ballestero J, Calvo C, Carlson R, Christians E and Madden E. (2008). Sea turtle nesting as a process influencing a sandy beach ecosystem. Biotropica 40(6): 758–765. https://doi.org/10.1111/j.1744-7429.2008.00435.x
Matsuzawa Y, Sato K, Sakamoto W, and Bjorndal, K A. (2002). Seasonal fluctuations in sand temperature: Effects on the incubation period and mortality of loggerhead sea turtle (Caretta caretta) pre-emergent hatchlings in Minabe, Japan. Marine Biology 140(3): 639–646. https://doi.org/10.1007/s00227-001-0724-2
Maulany R I, Booth D T and Baxter G S. (2012). Emergence success and sex ratio of natural and relocated nests of olive ridley turtles from Alas Purwo National Park, East Java, Indonesia. Copeia 2012(4): 738–747. https://doi.org/10.1643/CH-12-088
Mazaris A D, Kallimanis A S, Sgardelis S P, and Pantis J D. (2008). Do long-term changes in sea surface temperature at the breeding areas affect the breeding dates and reproduction performance of Mediterranean loggerhead turtles? Journal of Experimental Marine Biology and Ecology 367(2): 219–226. https://doi.org/10.1016/j.jembe.2008.09.025
Mrosovsky N, Kamel S, Rees A F and Margaritoulis D. (2002). Pivotal temperature for loggerhead turtles (Caretta caretta) from Kyparissia Bay, Greece. Canadian Journal of Zoology 80(12): 2118–2124. https://doi.org/10.1139/z02-204
Özdemir A, Ilgaz C, Kumlutas Y, Durmus S H, Kaska Y and T?rkozan O. (2007). An assessment of initial body size in loggerhead sea turtle (Caretta caretta) hatchlings in Turkey. Zoological Science 24(4): 376–380. https://doi.org/10.2108/zsj.24.376
Pallant J. (2002). SPSS survival manual: A step by step guide to data analysis using SPSS for windows (Version 12). Sydney: Allen & Unwin, 201.
Pereira C M, Booth D T and Limpus C J. (2012). Early swimming activity of hatchling flatback sea turtles Natator depressus: A test of the ‘predation risk’ hypothesis. Endangered Species Research 17: 43–51. https://doi.org/10.3354/esr00415
Peterson C, Fegley S, Voss C, Marschhauser S and VanDusen B. (2013). Conservation implications of density-dependent predation by ghost crabs on hatchling sea turtles running the gauntlet to the sea. Marine Biology 160(3): 629–640. https://doi.org/10.1007/s00227-012-2118-z
Rusli M U, Booth D T and Joseph J. (2016). Synchronous activity lowers the energetic cost of nest escape for sea turtle hatchlings. Journal of Experimental Biology 219: 1505–1513. https://doi.org/10.1242/jeb.134742
Salmon M, Hamann M, Wyneken J and Schauble C. (2009). Early swimming activity of the hatchling flatback sea turtles, Natator depressus: A test of the ‘predation risk’ hypothesis. Endangered Species Research 9: 41?47. https://doi.org/10.3354/esr00233
Santidrián-Tomillo P, Oro D, Paladino F V, Piedra R, Sieg A E and Spotila J R. (2014). High beach temperatures increased female-biased primary sex ratios but reduced output of female hatchlings in the leatherback turtle. Biological Conservation 176: 71–79. https://doi.org/10.1016/j.biocon.2014.05.011
Santos R G, Pinheiro H T, Martins A S, Riul P, Bruno S C and Janzen F J, and Loannou C C. (2016). The anti-predator role of within-nest emergence synchrony in sea turtle hatchlings. Proceedings of the Royal Society of London B 283(1834): 20160697. https://doi.org/10.1098/rspb.2016.0697
Sarahaizad M S, Shahrul Anuar M S and Jalal K C A. (2017). Splitting the eggs methods: Comparison of egg survivorship between styrofoam and open area nests for Penang Island Turtle Conservation. Malaysian Applied Biology Journal 46(2): 1–10.
Sarahaizad M S, Shahrul Anuar, M S and Mansor Y. (2012). Nest site selection and digging attempts of green turtles (Chelonia mydas, family Cheloniidae) at Pantai Kerachut and Telok Kampi, Penang Island, Peninsular Malaysia. Malaysian Applied Biology Journal 41(2): 31–39.
Spencer R J and Janzen F J. (2011). Hatching behavior in turtles. Integrative and Comparative Biology 51(1): 100–110. https://doi.org/10.1093/icb/icr045
Sukarno W, Mohamed-Ridzuan M A, Mohamad-Zabawi S, Mohd-Najib R, Abdul-Aziim M Y, Mansor Y, Azwa A H, Farizan S, Mohd-Khalil-Khasah M, Robert L H F, Abd-Karim S, Zakaria S, Syed Abdullah SAK, Zulkifli T, Wahidah M A, Abdul-Wahab A and Norul-Fahiezah S. (2007). Prosedur piawaian pengurusan penyu Semenanjung Malaysia. Kuala Terengganu: Jabatan Perikanan Malaysia, 2–40.
Tucker J K, Paukstis G L and Janzen F J. (2008). Does predator swamping promote synchronous emergence of turtle hatchling among nests? Behavioral Ecology 19(1): 35–40. https://doi.org/10.1093/beheco/arm097
Tuxbury S M and Salmon M. (2005). Competitive interactions between artificial lighting and natural cues during sea finding by hatchling marine turtles. Biological Conservation 121(2): 311–316. https://doi.org/10.1016/j.biocon.2004.04.022
Van Rhijn F A and Van Gorkom J C. (1983). Optic orientation in hatchlings of the sea turtle Chelonia mydas. III. Sea-finding behaviour: The role of photic and visual orientation in animals walking on the spot under laboratory conditions. Marine Behaviour and Physiology 9(3): 211–228. https://doi.org/10.1080/10236248309378594
Whelan C and Wyneken J. (2007). Estimating predation levels and site-specific survival of hatchling loggerhead sea turtles (Caretta caretta) from South Florida beaches. Copeia 2007(3): 745–754. https://doi.org/10.1643/0045-8511(2007)2007 [745:EPL ASS]2.0.CO;2
Wibbels T. (2003). Critical approaches to sex determination in sea turtles. In: P L Lutz, J A Musick and J Wyneken (eds.), The biology of sea turtles. Volume II. Boca Raton, FL: CRC Press, 103–134. https://doi.org/10.1201/9781420040807.ch4
Wood A, Booth D T and Limpus C J. (2014). Sun exposure, nest temperature and loggerhead turtle hatchlings: Implications for beach shading management strategies at sea turtle rookeries. Journal of Experimental Marine Biology and Ecology 451: 105–114. https://doi.org/10.1016/j.jembe.2013.11.005
Wyneken J. (1997). Sea turtle locomotion: Mechanisms, behavior and energetics. In: P L Lutz and J A Musick (eds.), The biology of sea turtles. Boca Raton, FL: CRC Press, 165–198.
___. (2000).The migratory behaviour of hatchling sea turtles beyond the beach. In: N J Pilcher and G Ismail (eds.), Sea turtles of the Indo-Pacific. London, United Kingdom: ASEAN Academic Press, 121–142.
Zare R, Vaghefi M E and Kamel S J. (2012). Nest location and clutch success of the hawksbill sea turtle (Eretmochelys imbricata) at Shivdar Island, Iran. Chelonian Conservation and Biology 11(2): 229–234. https://doi.org/10.2744/CCB-1003.1