Study on the Effects of Gamma Irradiation on Protocorm-Like Bodies of Dendrobium Hybrid against Fusarium proliferatum and Fusarium oxysporum

Main Article Content

Sangeetha Siva Sangu
Nik Mohd Izham Mohamed Nor
Latiffah Zakaria
Azhar Mohamad
Sreeramanan Subramaniam

Abstract

Dendrobiums orchids are prone to diseases caused by Fusarium proliferatum and Fusarium oxysporum. Therefore, gamma irradiation was utilised on Dendrobium hybrid, D5 to produce cultivars that are resistant towards these fungi. Gamma doses of 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 Gray (Gy) were radiated on thin cell layer (TCL) of protocorm-like bodies (PLB) and were observed for four weeks. Gamma doses of 20 and 30 Gy were optimum for survivability and shoot regeneration of treated PLB. The radio sensitivity (LD50) of the PLB was approximately 63 Gy. Histology and scanning electron microscopy (SEM) analysis showed prominent cell damage and alteration in surface morphology in gamma irradiated PLB. The number of stomata and stomatal aperture decreased where it was 15.47 ± 8.16 µm at 10 Gy but reduced to only 8.24 ± 3.91 µm at 90 Gy. Direct amplification of minisatellite DNA (DAMD) showed high degree of polymorphism in these PLB. When challenged with spore suspension of these fungi, plantlets radiated with 20 and 30 Gy of gamma irradiation showed the least disease symptom, thus, proving resistance towards these fungi. Therefore, this study is a preliminary screening study where the optimum doses of gamma irradiation were selected based on the reaction of radiated TCL of PLB towards the mutagen.


 


Dendrobium orkid mudah terdedah kepada penyakit yang disebabkan oleh Fusarium proliferatum dan Fusarium oxysporum. Oleh itu, penyinaran gamma digunakan pada hibrid Dendrobium, D5 untuk menghasilkan kultivar yang tahan terhadap kulat ini. Dos gamma 10, 20, 30, 40, 50, 60, 70, 80, 90 dan 100 Grey (Gy) dipancarkan pada lapisan sel nipis (TCL) badan seperti protocorm (PLB) dan diperhatikan selama empat minggu. Dos gamma 20 dan 30 Gy adalah optimum untuk kelangsungan hidup dan penjanaan semula pucuk PLB yang dirawat. Sensiviti radio (LD50) PLB adalah kira-kira 63 Gy. Analisis histologi dan pemeriksaan mikroskop elektron (SEM) menunjukkan kerosakan sel yang utama dan perubahan dalam morfologi permukaan dalam PLB yang menyinari gamma. Bilangan stomata dan stomatal aperture menurun di mana ia adalah 15.47 ± 8.16 ?m pada 10 Gy tetapi dikurangkan kepada hanya 8.24 ± 3.91 ?m pada 90 Gy. Penguatan langsung DNA minisatelit (DAMD) menunjukkan tahap polimorfisme yang tinggi dalam PLB ini. Apabila dicabar dengan penggantungan spora kulat ini, kilang-kilang yang dipancarkan dengan 20 dan 30 Gy penyinaran gamma menunjukkan gejala penyakit yang paling kurang, oleh itu, membuktikan ketahanan terhadap kulat ini. Oleh itu, kajian ini adalah kajian saringan awal di mana dos optimum penyinaran gamma dipilih berdasarkan tindak balas TCL yang dipancarkan PLB terhadap mutagen.

Article Details

How to Cite
Study on the Effects of Gamma Irradiation on Protocorm-Like Bodies of Dendrobium Hybrid against Fusarium proliferatum and Fusarium oxysporum. (2019). Tropical Life Sciences Research, 30(3), 129–143. https://doi.org/10.21315/tlsr2019.30.3.9
Section
Original Article

References

Ali H, Ghori Z, Sheikh S and Gul A. (2015). Effect of gamma radiation on crop production. In: K R Hakeem (ed.). Crop production and global environmental issues. Switzerland: Springer International Publishing, 27–78. https://doi.org/10.1007/978-3-319-23162-4_2

Asare A T, Mensah F, Acheampong S, Asare-Bediako E and Armah J. (2017). Effects of gamma irradiation on agromorphological characteristics of okra (Abelmoschus esculentus L. Moench.). Advances in Agriculture 2017: 1–7. https://doi.org/10.1155/2017/2385106

Bhattacharyya P, Kumaria S and Tandon P. (2015). Applicability of ISSR and DAMD markers for phyto-molecular characterization and association with some important biochemical traits of Dendrobium nobile, an endangered medicinal orchid. Phytochemistry 117: 306–316. https://doi.org/10.1016/j.phytochem.2015.06.022

Chase M W, Cameron K M, Freudenstein J V, Pridgeon A. M, Salazar G, van den Berg C and Schuiteman A. (2015). An updated classification of Orchidaceae. Botanical Journal of the Linnean Society 177(2): 151–174. https://doi.org/10.1111/boj.12234

Dehgahi R, Zakaria L, Mohamad A, Joniyas A and Sreeramanan S. (2016). Effects of fusaric acid treatment on the protocorm-like bodies of Dendrobium sonia-28. Protoplasma 253: 1373–1383. https://doi.org/10.1007/s00709-015-0895-1

Devi S P, Kumaria S, Rao S R and Tandon P. (2014). Single primer amplification reaction (SPAR) methods reveal subsequent increase in genetic variations in micropropagated plants of Nepenthes khasiana Hook. f. maintained for three consecutive regenerations. Gene 538: 23–29. https://doi.org/10.1016/j.gene.2014.01.028

Dikkala P K, Hymavathi T V, Roberts P, and Sujatha M. (2018). Effect of heat treatment and gamma irradiation on the total bacterial count of selected millet grains (Jowar, Bajra and Foxtail). International Journal of Current Microbiology and Applied Sciences 7(2): 1293–1300. https://doi.org/10.20546/ijcmas.2018.702.158

Fulzele D P, Satdive R, Kamble S, Singh S and Singh S. (2015). Improvement of anticancer drug camptothecin production by gamma irradiation on callus cultures of Nothapodytes foetida. International Journal of Pharmaceutical Research and Allied Science 4: 19–27.

Gaafar R M, Hamouda and Badr A. (2016). Seed coat color, weight and eye pattern inheritance in gamma-rays induced cowpea M2-mutant line. Journal of Genetic Engineering and Biotechnology 14: 61–68. https://doi.org/10.1016/j.jgeb.2015.12.005

Hegazi A and Hamideldin N. (2010). The effect of gamma irradiation on enhancement of growth and seed yield of okra [Abelmoschus esculentus (L.) Monech] and associated molecular changes. Journal of Horticulture and Forestry 2(3): 38–51.

Hoeck A V, Horemans N, Hees M V, Nauts R, Knapen D, Vandenhove H and Blust R. (2015). Characterizing dose response relationships: Chronic gamma radiation in Lemna minor induces oxidative stress and altered polyploidy level. Journal of Environmental Radioactivity 150: 195–202. https://doi.org/10.1016/j.jenvrad.2015.08.017

Iglesias-Andreu L G, Octavio-Aguilar P and Bello-Bello J. (2012). Current importance and potential use of low doses of gamma radiation in forest species. In F Adrovic (ed.). Gamma radiation, Available from http://www.intechopen.com/books/gammaradiation/current-importance-and-potential-use-of-low-doses-of-gamma-radiationin-forest-species. [Accessed 22 March 2017].

Kalagatur N K, Mudili V, Kamasani J R, and Siddaiah C. (2018). Discrete and combined effects of Ylang-Ylang (Cananga odorata) essential oil and gamma irradiation on growth and mycotoxins production by Fusarium graminearum in maize. Food Control 94: 276–283. https://doi.org/10.1016/j.foodcont.2018.07.030

Kim J H, Na C H, Kim D S, Kim J B and Seo Y W. (2015). The effect of chronic gamma ray irradiation on lignocellulose of Brachypodium distachyon. Cellulose 22: 2419–2430. https://doi.org/10.1007/s10570-015-0687-y

Krishna H, Alizadeh M, Singh D, Singh U, Chauhan N, Eftekhari, M, Sadh R K. (2016). Somaclonal variations and their applications in horticultural crops improvement. 3 Biotech 6(54): 1–18. https://doi.org/10.1007/s13205-016-0389-7

Latiffah Z, Nur Hayati M Z, Baharuddin S and Maziah Z. (2009). Identification and pathogenicity of Fusarium species associated with root rot and stem rot of Dendrobium. Asian Journal of Plant Pathology 3: 14–21. https://doi.org/10.3923/ajppaj.2009.14.21

Li S, Zheng Y C, Cui H R, Fu H W, Shu Q Y and Huang J Z (2016). Frequency and type of inheritable mutations induced by ? rays in rice as revealed by whole genome sequencing. Journal of Zhejiang University-SCIENCE B 17(12): 905–915. https://doi.org/10.1631/jzus.B1600125

Masiello M, Somma S, Ghionna V, Logrieco A F, Moretti A. (2019). In Vitro and in field response of different fungicides against Aspergillus flavus and Fusarium species causing ear rot disease of maize. Toxins 11(1): 11. https://doi.org/10.3390/toxins11010011

Mudibu J, Nkongolo K K C, Mehes-Smith M and Kalonji-Mbuyi A. (2011). Genetic analysis of a soybean genetic pool using ISSR marker: Effect of gamma radiation on genetic variability. International Journal of Plant Breeding and Genetics 5(3): 235–245. https://doi.org/10.3923/ijpbg.2011.235.245

Murashige T and Skoog F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum 15: 473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

Nei M and Li W H. (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences 76: 5269–5273. https://doi.org/10.1073/pnas.76.10.5269

Nurmansyah, Alghamdi S A, Migdadi H M and Farooq M. (2017). Morphological and chromosomal abnormalities in gamma radiation-induced mutagenized faba bean genotypes. International Journal of Radiation Biology 94(2): 174–185. https://doi.org/10.1080/09553002.2018.1409913

Oladosu Y, Rafii M Y, Abdullah N, Hussin G, Ramli A, Rahim H A, Miah G. and Usman M. (2015). Principle and application of plant mutagenesis in crop improvement: A review. Biotechnology and Biotechnological Equipment 30: 1–16. https://doi.org/10.1080/13102818.2015.1087333

Serra M S, Pulles M B, Mayanquer F T, Vallejo M C, Rosero M I, Ortega J M, and Naranjo L N. (2018). Evaluation of the use of gamma radiation for reduction of Aflatoxin B1 in corn (Zea mays) used in the production of feed for broiler chickens. Journal of Agricultural Chemistry and Environment 7: 21–23. https://doi.org/10.4236/jacen.2018.71003

Singh A and Duggal S. (2009). Medicinal orchids: An overview. Ethnobotanical Leaflets 13: 351–363.

Singh B, Ahuja S, Singhal R K and Babu P V. (2013). Effect of gamma radiation on wheat plant growth due to impact on gas exchange characteristics and mineral nutrient uptake and utilization. Journal of Radioanalytical and Nuclear Chemistry 298: 249–257. https://doi.org/10.1007/s10967-012-2342-5

Swett C S and Uchida Y J. (2015). Characterization of Fusarium diseases on commercially grown orchids in Hawaii. Plant Pathology 64: 648–654. https://doi.org/10.1111/ppa.12290

Teixeira da Silva J A. (2013). The role of thin cell layers in regeneration and transformation in orchids. Plant Cell, Tissue and Organ Culture 113: 149–161. https://doi.org/10.1007/s11240-012-0274-y

Verma A K, Reddy K S, Dhansekar P and Singh B. (2017). Effect of acute gamma radiation exposure on seed germination, survivability and seedling growth in cumin cv. Gujarat Cumin-4. International Journal of Seed Spices 7(1): 23–28.

Vyas S, Guha S, Kapoor P and Rao I U. (2010). Micropropagation of Cymbidium Sleeping Nymph through protocorm-like bodies production by thin cell layer culture. Scientia Horticulturae 123: 551–557. https://doi.org/10.1016/j.scienta.2009.11.020

Wendt K S, Yoshida K, Itoh T, Bando M, Koch B, Schirghuber E, Tsutsumi S, et al. (2008). Cohesin mediates transcriptional insulation by CCCTC-binding factor. Nature 451(7180): 796–801. https://doi.org/10.1038/nature06634

Zhou Z, Bebeli P J, Somers D J and Gustafson J P. (1997). Direct amplification of minisatelliteregion DNA with VNTR core sequences in the genus Oryza. Theoretical and Applied Genetics 95: 942–949. https://doi.org/10.1007/s001220050645

Zhu M, Dai S and Chen S. (2012). The stomata frontline of plant interaction with the environment-perspectives from hormone regulation. Frontiers in Biology 7: 96–112. https://doi.org/10.1007/s11515-012-1193-3