Chemicals Constituents Isolated from Cultivate Alpinia conchigera Griff. and Antimicrobial Activity

Main Article Content

Mohamad Nurul Azmi Mohamad Taib
Nursyazwani Anuar
Khayriyyah Mohd Hanafiah
Aeman Ali Kudayr Al-Shammary
Mardiana Saaid
Khalijah Awang

Abstract

Alpinia conchigera Griff. is a plant species from the family Zingiberaceae. Coloquially known as wild ginger, Alpinia conchigera Griff. is used as food condiment and for traditional treatment of skin diseases. Isolation studies to identify bioactive compounds of rhizomes of Alpinia conchigera yielded seven compounds; 1’S-1’-acetoxychavicol acetate (1), trans-p-coumaryl diacetate (2), p-hydroxycinnamyl acetate (3), 1’S-1’-hydroxychavicol acetate (4) p-hydroxybenzaldehyde (5), stigmasterol (6) and ?-sitosterol (7). Compounds 1, 2 and 5 were evaluated for antimicrobial activity against methicillin-resistant Staphylococcus aureus (MRSA). Among the compounds tested, Compound 1 showed good antimicrobial activity against the strain of MRSA with minimum inhibition concentration (MIC) value of 0.5 mg/mL. Meanwhile, Compounds 2 and 5 exhibited moderate activity with MIC value between 1.0 and 2.0 mg/mL. These findings indicate antimicrobial potential of 1’S-1’-acetoxychavicol acetate (1), compound derived from rhizome of Alpinia conchigera Griff. against MRSA, which warrant further investigation.

Article Details

How to Cite
Chemicals Constituents Isolated from Cultivate Alpinia conchigera Griff. and Antimicrobial Activity. (2020). Tropical Life Sciences Research, 31(1), 159–178. https://doi.org/10.21315/tlsr2020.31.1.10
Section
Original Article

References

Awang K, Azmi M N, Aun L I I, Aziz A N, Ibrahim H and Nagoor N H. (2010). The apoptotic effect of 1’S-1’-acetoxychavicol acetate from Alpinia conchigera on human cancer cells. Molecules 15(11): 8048–8059. https://doi.org/10.3390/molecules15118048

Aziz A N, Ibrahim H, Syamsir D R, Mohtar M, Vejayan M and Awang K. (2013). Antimicrobial compounds from Alpinia conchigera. Journal of Etnopharmacology 145(3): 798–802. https://doi.org/10.1016/j.jep.2012.12.024

Azuma H, Miyasaka K, Yokotani T, Tachibana T, Kojima-Yuasa A, Matsui-Yuasa I and Ogino K. (2006). Lipase catalyzed preparation of optically active 1’-acetoxychavicol acetate and their structure activity relationships in apoptotic activity against human leukemia HL-60 cells. Bioorganic and Medicinal Chemistry 14(6): 1811–1818. https://doi.org/10.1016/j.bmc.2005.10.029

Baba J, Inabo H I, Umoh V J and Olayinka A T. (2016). Antibiotic resistance patterns of methicillin-resistance Staphylococcus aureus (MRSA) isolated from chronic skin ulcer of patients in Kaduna state, Nigeria. IOSR Journal of Pharmacy 1: 72–77.

Burkhill I H. (1966). A dictionary of the economic products of the Malay Peninsular (2nd edition). Kuala Lumpur: Ministry of Agriculture and Cooperative.

Forgo P and Kövér K E. (2004). Gradient enhanced selective experiments in the 1 H NMR chemical shift assignment of the skeleton and side-chain resonances of stigmasterol, a phytosterol derivative. Steroids 69(1): 43–50. https://doi.org/10.1016/j.steroids.2003.09.012

Habib M R, Nikkon F, Rahman M, Haque M E and Karim M R. (2007). Isolation of Stigmasterol and ?-sitosterol from methanolic extract of root bark of Calotropis gigantea (Linn). Pakistan Journal of Biological Sciences 10(22): 4174–4176. https://doi.org/10.3923/pjbs.2007.4174.4176

Hasima N, Aun L I I, Azmi M N, Aziz A N, Thirthagiri E, Ibrahim H and Awang K. (2010). 1’S-1’-acetoxyeugenol acetate: A new chemotherapeutics natural compound against MCF-7 human breast cancer cells. Phytomedicine 17(12): 935–939. https://doi.org/10.1016/j.phymed.2010.03.011

Henderson M R. (1954). Malayan wild flowers: Monocotyledons. Kuala Lumpur: Malayan Nature Society.

Ibrahim H, Chooi O H and Hassan R. (2000). Ethnobotanical survey of the ginger family in selected Malay villages in Peninsular Malaysia. Malaysia Journal of Science 19(1): 93–99.

Ibrahim H, Awang K, Ali N A M, Malek S N A, Jantan I, Syamsir D R, Tohar N and Aziz A N. (2008). Selected Malaysian aromatic plants and their essential oil component. Kuala Lumpur: Awalist E Enterprise.

Ibrahim H, Aziz A N, Syamsir D R. Ali N A M, Mohtar M, Ali R M and Awang K. (2009). Essential oils of Alpinia conchigera Griff. and their antimicrobial activities. Food Chemistry 113(2): 575–577. https://doi.org/10.1016/j.foodchem.2008.08.033

Jain P S, Bari S B and Surana S J. (2009). Isolation of Stigmasterol and Sitosterol from petroleum ether extract of woody stem of Abelmoschus manihot. Asian Journal of Biological Sciences 2(4): 112–117. https://doi.org/10.3923/ajbs.2009.112.117

Janssen A M and Scheffer J C. (1985). Acetoxychavicol acetate, an antifungal component of Alpinia galanga. Planta Medica 51(6): 507–511. https://doi.org/10.1055/s-2007-969577

Jayaprakasha G K, Mandadi K K, Poulose S M, Jadegoud Y, Nagana Gowda G A and Patil B S. (2007). Inhibition of colon cancer cell growth and antioxidant activity of bioactive compounds from Poncirus trifoliata (L.) Raf. Bioorganic Medicinal Chemistry 15(14): 4923–4932. https://doi.org/10.1016/j.bmc.2007.04.044

Lakhundi S and Zhang K. (2018). Methicillin resistant Staphylococcus aureus: Molecular characterization, evolution, and epidemiology. Clinical Microbiology Review 31(4): e00020-18. https://doi.org/10.1128/CMR.00020-18

Matsuda H, Pongpiriyadacha Y, Morikawa T, Ochi M and Yoshikawa M. (2003a). Gastroprotective effects of phenylpropanoids from the rhizomes of Alpinia galanga in rats: structural requirements and mode of action. European Journal of Pharmacology 471(1): 59–67. https://doi.org/10.1016/S0014-2999(03)01785-0

Matsuda H, Morikawa T, Managi H and Yoshikawa M. (2003b). Antiallergic principles from Alpinia galanga: structural requirements of phenylpropanoids for inhibition of degranulation and release of TNF-? and IL-4 in RBL-2H3 cells. Bioorganic & Medicinal Chemistry Letters 13(19): 3197–3202. https://doi.org/10.1016/S0960-894X(03)00710-8

Matsuda H, Ando S, Morikawa T, Kataoka S and Yoshikawa M. (2005). Structure-activity relationships of 1'S-1'-acetoxychavicol acetate for inhibitory effect on NO production in lipopolysaccharide-activated mouse peritoneal macrophages. Bioorganic & Medicinal Chemistry Letters 15(7): 1949–1953. https://doi.org/10.1016/j.bmcl.2005.01.070

Ridley H N. (1909). Material for a flora of the Malayan Peninsular. Singapore: Methodist Publishing House. Smith R M. (1990). Alpinia (Zingiberaceae): A proposed new infragenesis classification. Edinburgh Journal of Botany 47(1): 1–75. https://doi.org/10.1017/S0960428600003140

Victorio C P. (2011). Therapeutic value of the genus Alpinia, Zingiberaceae. Brazilian Journal Pharmacology 21(1): 194–201. https://doi.org/10.1590/S0102-695X2011005000025

Watanabe N, Kataoka T, Tajika T, Uramoto M, Magae J and Nagai K. (1995). 1'-acetoxychavicol acetate as an inhibitor of phagocytosis of macrophages. Bioscience Biotechnology and Biochemistry 59(8): 1566–1567. https://doi.org/10.1271/bbb.59.1566

Wongsatit C and Ampol B. (2003). Ethnomedical uses of Thai Zingiberaceous plant. Annual Journal Herbal 10: 2546.

Yasuhara T, Manse Y, Morimoto T, Qilong W, Matsuda H, Yoshikawa M and Muraoka O. (2009). Acetoxybenzhydrols as highly active and stable analogues of 1’S-1’- acetoxychavicol, a potent antiallergic principal from Alpinia galangal. Bioorganic and Medicinal Chemistry Letters 19(11): 2944–2946. https://doi.org/10.1016/j.bmcl.2009.04.065