Identification and Characterisation of Endophytic Bacteria from Coconut (Cocos nucifera) Tissue Culture

Main Article Content

Elv Nhiel Salo
Annabelle Novero

Abstract

The coconut is an important economic crop in the Philippines which currently ranks as the world’s second largest producer. This study characterised and identified endophytes from coconut tissue culture in order to gain an initial understanding of their potential uses as sources of bioproducts. The isolates were evaluated using morphological, biochemical and molecular methods. Gram staining results revealed that four out of five bacteria isolated were Gram positive. Isolate CEB 1 fermented all three sugars in the Triple Sugar Iron Test while the other four did not. 16S rDNA gene fragments were amplified from genomic DNA using the universal primers 16F27 and 16R1542. The 16S rDNA sequence were found to be homologous to Bacillus subtilis and Pantoea dispersa. Phylogenetic analyses showed significant clustering of bacterial isolates together with archived DNA of B. subtilis and P. dispersa. All isolated bacteria matched the characteristics of their molecular homologies. Isolate CEB 5, identified as B. subtilis, produced red pigments which are possibly pulcherrimin. Literature reports that pulcherrimin possesses antimicrobial activity against yeast species, microscopic fungi, and postharvest pathogens. P. dispera, on the other hand, has been reported to convert insoluble phosphorus into soluble form to enable plants to take up more phosphorus. Determination of the bioactivities of endophytes reported in this study may enable the discovery of novel bioproducts.

Article Details

How to Cite
Identification and Characterisation of Endophytic Bacteria from Coconut (Cocos nucifera) Tissue Culture. (2020). Tropical Life Sciences Research, 31(1), 57–68. https://doi.org/10.21315/tlsr2020.31.1.4
Section
Original Article

References

Abd Allah E F, Alqarawi A A, Hashem A, Raadhakrishnan R, Al-Huqail, Al-Otibi F O N, Malik J A, Alharbi R I and Egamberdieva D. (2017). Endophytic bacterium Bacillus subtilis (BERA 71) improves salt tolerance in chickpea plants by regulating the plant defense mechanisms. Journal of Plant Interactions 13(1): 37–44. https://doi.org/10.1080/17429145.2017.1414321

Altschul S F, Gish W, Miller W, Myers E W and Lipman D J. (1990). Basic local alignment search tool. Journal of Molecular Biology 215(3): 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

Barbe V, Cruveiller S, Kunst F, Lenoble P, Meurice G, Sekowska A, Vallenet D, Wang T, Moszer I, Medigue C and Danchin A. (2009). From a consortium sequence to a unified sequence: The Bacillus subtilis 168 reference genome a decade later. Microbiology 155: 17581775. https://doi.org/10.1099/mic.0.027839-0

Berger S. (2018). GIDEON Guide to Medically important bacteria: 2018 edition. US: GIDEON Informatics Inc.

Bhatia S, Sharma K, Dahiya R and Ber T. (2015). Modern applications of plant biotechnology in pharmaceutical sciences. Massachusetts: Academic Press, 393–400.

Cappuccino J G and Sherman N. (2014). Microbiology: A laboratory manual (10th edition). Glenview, IL: Pearson Education Inc.

Chan E and Elevitch C R. (2006). Cocos nucifera. In: Elevitch C R. (Ed.), Traditional trees of Pacific Islands: Their culture, environment and use. Permanent Agriculture Resources, 277–301.

Chen Y, Fan J, Du L, Xu H, Zhang Q and He Q. (2014). The application of phosphate solubilizing endophyte Pantoea dispersa triggers the microbial community in red acidic soil. Applied Soil Ecology 84: 235–244. https://doi.org/10.1016/j.apsoil.2014.05.014

Cook A H and Slater C A. (1954). Metabolism of “wild” yeasts. Journal of the Institute of Brewing 20: 213–217. https://doi.org/10.1002/j.2050-0416.1954.tb06226.x

Figueiredo J E F, Gomes E A, Guimarães C T, de Paula Lana U G, Teixeira M A, Lima G V C and Bressa Bressan W. (2009). Molecular analysis of endophytic bacteria from the genus Bacillus isolated from tropical maize (Zea mays l.). Brazilian Journal of Microbiology 40: 522–534. https://doi.org/10.1590/S1517-83822009000300014

Fritze D and Pukall R. (2001). Reclassification of bioindicator strains Bacillus subtilis DSM 675 and Bacillus subtilis DSM 2277 as Bacillus atrophaeus. International Journal of Systematic Evolutionary Microbiology 51: 35–37. https://doi.org/10.1099/00207713-51-1-35

Gond S K, Bergen M S, Torres M S and White J F. (2015). Endophytic Bacillus spp. produce antifungal lipopeptides and induce host defence gene expression in maize. Microbiological Research 17: 79–87. https://doi.org/10.1016/j.micres.2014.11.004

Gurtler V and Stanisich V A. (1996). New approaches to typing and identification of bacteria using the 16s-23s rDNA spacer region. Microbiology 142: 3–16. https://doi.org/10.1099/13500872-142-1-3

Jasim B, Joseph A A, John C J, Mathew J and Radhakrishnan E K. (2014). Isolation and characterization of plant growth promoting endophytic bacteria from the rhizome of Zingiber officinale. 3 Biotech 4: 197–204. https://doi.org/10.1007/s13205-013-0143-3

Kalimutho M, Ahmad A and Kassim Z. (2007). Isolation, characterization and identification of bacteria associated with mucus of Acropora cervicornis coral from Bidong island, Terengganu, Malaysia. Malaysian Journal of Science 26(2): 27–39.

Kantor A, Hutkova J, Petrova J, Helba L and Kacaniova M. (2015). Antimicrobial activity of pulcherrimin pigment produced by Metschnikowia pulcherrima against various yeast species. Journal of Microbiology, Biotechnology and Food Sciences 5(3): 282–285. https://doi.org/10.15414/jmbfs.2015/16.5.3.282-285

Krishnan P, Bhat R, Kush A and Ravikuman P. (2012). Isolation and functional characterization of bacterial endophytes from Carica papaya fruits. Journal of Applied Microbiology 113: 308–317. https://doi.org/10.1111/j.1365-2672.2012.05340.x

Kobayashi D Y and Palumbo J D. (2000). Bacterial endophytes and their effects on plants and uses in agriculture. In: Bacon, C W and White J F. (Eds.), Microbial endophytes. New York, NY: Marcel Dekker, Inc., 199–233.

Kumar A, Singh R, Yadav A, Giri D D, Singh, P.K. and Pandey K D. (2015). Isolation and characterization of bacterial endophytes of Curcuma longa L. 3 Biotech 6: 1–8.

Labrador K L, Lustica E L T and Novero A U. (2014). Isolation and characterization of bacterial endophytes associated with sago palm (Metroxylon sagu Rottb.) in tissue culture. Asian Journal of Microbiology Biotechnology and Environmental Science 16(4): 877–885.

Luis S, Mayra M, Teresa P, Alfonso A, Antonio A, Iván C, Luis C J and Carlos O. (2012). Coconut (Cocos nucifera L.) somatic embryogenesis and related gene expression. In: Aslam J, Srivastava P S and Sharma M P. (Eds.), Somatic embryogenesis and gene expression. New Delhi: Narosa Publishing House, 172–187.

Madigan M T, Martinko J M, Stahl D A and Clark D P. (2012). Biology of microoorganisms (13th edition). California: Benjamin Cummings, 475–516.

Miyashita M. (2006). National Institute of Technology and Evaluation, Biological Research Center. http://www.nite.go.jp/en/nbrc/cultures/nbrc/index.html (accessed on April 2018).

Moeller R, Horneck G, Facius R and Stackebrandt E. (2005). The application of phosphate solubilizing endophyte Pantoea dispersa triggers the microbial community in red acidic soil. FEMS Microbiology Ecology 51(2005): 231–236. https://doi.org/10.1016/j.femsec.2004.08.008

Naik J H. (2017). Growth trends in area, production and productivity of coconut in major growing countries. IOSR Journal of Humanities and Social Science (IOSR-JHSS) 22(9): 47–56. https://doi.org/10.9790/0837-2203035657

Nakano M M, Dailly Y P, Zuber P and Clark D P. (1997). Characterization of anaerobic fermentative growth of Bacillus subtilis: Identification of fermentation end products and genes required for growth. Journal of Bacteriology 179(21): 6749–6755. https://doi.org/10.1128/JB.179.21.6749-6755.1997

O’Donnell A G, Norris J R, Berkeley R C W, Claus D, Kaneko T, Logan N and Nozaki R. (1980). Characterization of Bacillus subtilis, Bacillus pumilus, Bacillus licheniformis, and Bacillus amyloliquefaciens by pyrolysis gas-liquid chromatography, deoxyribonucleic acid deoxyribonucleic acid hybridization, biochemical tests, and API systems. International Journal of Systematic Bacteriology 30(2): 448–459. https://doi.org/10.1099/00207713-30-2-448

Ree J F and Guerra M P. (2015). Palm (Arecaceae) somatic embryogenesis. In Vitro Cell and Developmental Biology 51(6): 589–602. https://doi.org/10.1007/s11627-015-9722-9

Ryan R P, Germaine K, Franks A, Ryan D J and Dowling D N. (2008). Bacterial endophytes: Recent developments and applications. FEMS Microbiology Letters 278(1): 1–9. https://doi.org/10.1111/j.1574-6968.2007.00918.x

Schulz B and Boyle C. (2006). What are endophytes? Soil Biology 9: 1–13. https://doi.org/10.1007/3-540-33526-9_1

Tamura K, Stetcher G, Peterson D, Flipski A and Kumar S. (2011). MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology and Evolution 30(12): 2725–2729. https://doi.org/10.1093/molbev/mst197

Thompson J D, Higgins D G and Gibson T J. (1994). CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positionspecific gap penalties and weight matrix choice. Nucleic Acids Research 22(22): 4673–4680. https://doi.org/10.1093/nar/22.22.4673

Uffen R L and Canale-Parola E. (1971). Synthesis of pulcherriminic acid by Bacillus subtilis. Journal of Bacteriology 111(1): 86–93. https://doi.org/10.1128/JB.111.1.86-93.1972

Verma S K, Kingsley K, Irizarry I, Bergen M, Kharwar R N and White Jr J F. (2017). Seed vectored endophytic bacteria modulate development of rice seedlings. Journal of Applied Microbiology 122: 1680–1691. https://doi.org/10.1111/jam.13463

Verstraete B, Janssens S, Lemaire B, Smets E and Dessein S. (2013). Phylogenetic lineages in Vanguerieae (Rubiaceae) associated with Burkholderia bacteria in Sub-Saharan Africa. American Journal of Botany 100(12): 2380–2387. https://doi.org/10.3732/ajb.1300303

Volksch B, Thon S, Jacobsen I and Gube M. (2009). Polyphasic study of plant- and clinicassociated Pantoea agglomerans strains reveals indistinguishable virulence potential. Infection, Genetics, and Evolution 9(6): 1381–1391. https://doi.org/10.1016/j.meegid.2009.09.016

Walterson A M and Stavrinides J. (2015). Pantoea: Insights into a highly versatile and diverse genus within the Enterobacteriaceae. FEMS Microbiology Reviews 39(6): 968–984. https://doi.org/10.1093/femsre/fuv027

Yarza P, Spröer C, Swiderski J, Mrotzek N, Spring S, Tindall B J, Gronow S, …, and Rosselló-Móra R. (2013). Sequencing orphan species initiative (SOS): Filling the gaps in the 16S rRNA gene sequence database for all species with validly published names. Systematic and Applied Microbiology 36(1): 69–73. https://doi.org/10.1016/j.syapm.2012.12.006

Zinniel D K, Lambrecht P N B, Feng Z, Kuczmarski D, Higley P, Ishimaru C A, Arunakumari A, Barletta R G and Vidaver A K. (2002). Isolation and characterization of endophytic colonizing bacteria from agronomic crops and prairie plants. Applied and Environmental Microbiology 68(5): 2198–2208.