Influence of N6-Benzyladenine and Sucrose on In Vitro Direct Regeneration and Microrhizome Induction of Kaempferia parviflora Wall. Ex Baker, An Important Ethnomedicinal Herb of Asia

Main Article Content

Catherine Labrooy
Thohirah Lee Abdullah
Johnson Stanslas

Abstract

Kaempferia parviflora is an ethnomedicinally important plant. Conventional propagation of K. parviflora is hindered by slow growth rate, long dormancy periods and dual use of rhizomes for seeds as well as marketable produce. In our study, we developed a promising dual-phase micropropagation protocol to increase number of plantlets, survivability, biomass and quality plantlets for mass production. Multiple shoot regeneration was found most successful on Murashige and Skoog (MS) media supplemented with 35.52 ?M N6-benzyladenine (BA) in terms of highest number of shoots (22.4 ± 1.84), leaves (29.27 ± 1.30), and roots (17.8 ± 1.72) per explant. High survivability was observed with an acclimatisation percentage of 100% in sterile perlite medium. This method was shown to be preferable compared to conventional propagation in terms of propagation time and number of plantlets. Regenerated in vitro plantlets were then successfully induced to form microrhizomes in MS media with an optimal concentration of 6% (w/v) sucrose. Increase in microrhizome biomass (35.7 ± 2.59 g per flask), number of microrhizomes (5.2 ± 0.78), shoots (8.5 ± 1.58) and roots (8.5 ± 1.58) were observed for this treatment. This investigation successfully highlights the manipulation of single factors in short time frame to produce a simple and efficient alternative propagation method for K. parviflora.

Article Details

How to Cite
Influence of N6-Benzyladenine and Sucrose on In Vitro Direct Regeneration and Microrhizome Induction of Kaempferia parviflora Wall. Ex Baker, An Important Ethnomedicinal Herb of Asia. (2020). Tropical Life Sciences Research, 31(1), 123–139. https://doi.org/10.21315/tlsr2020.31.1.8
Section
Original Article

References

Abbott A J and Belcher A R. (1986). Potato tuber formation in vitro. In: Withers L A and Alderson P G. (eds.), Plant tissue culture and its agricultural applications. London: Butterworth-Heinemann, 113–122. https://doi.org/10.1016/B978-0-407-00921-9.50017-8

Alveno V. (2012). In vitro shoot induction of Kaempferia parviflora Wall ex Baker. Institute Pertanian Bogor Repository. https://pdfs.semanticscholar.org/b2e9/abcdd8835d756ac267b6b7cf070d01b63075.pdf

Archana C P, Geetha S P and Indira B. (2013). In vitro microrhizome induction in three high yielding cultivars of Zingiber officinale rosc. and their phytopathological analysis. International Journal of Advanced Biotechnology and Research 4(3): 296–300.

Arora J S, Singh K, Grewal H and Chanana Y R. (1996). In vitro cormel production from nodal buds and cormel tips in Gladiolus. New Delhi: Oxford and IBH Publishing Co. Pvt. Ltd., 50–53.

Balachandran S M, Bhat S R and Chandel K P S. (1990). In vitro clonal multiplication of turmeric (Curcuma spp.) and ginger (Zingiber officinale Rosc.) Plant Cell Reports 8(9): 521–524. https://doi.org/10.1007/BF00820200

Bhat S R, Chandel K P S and Kackar A. (1994). In vitro induction of rhizomes in ginger Zingiber officinale Roscoe. Indian Journal of Experimental Biology 32(5): 340–344.

Chithra M, Martin K P, Sunandakumari C and Madhusoodanan P V. (2005). Protocol for rapid propagation, and to overcome delayed rhizome formation in field established in vitro derived plantlets of Kaempferia galanga L. Scientia Horticulturae 104(1): 113–120. https://doi.org/10.1016/j.scienta.2004.08.014

Chirangini P, Sinha S K and Sharma G J. (2005). In vitro propagation and microrhizome induction in Kaempferia galanga Linn. and K. rotunda Linn. Indian Journal of Biotechnology 4(3): 404.

Chirangini P and Sharma G J. (2005). In vitro propagation and microrhizome induction in Zingiber cassumunar (Roxb.), an antioxidant-rich medicinal plant. Journal of Food, Agriculture and Environment 3(1): 139–142.

Dheeranupattana S, Phoonchuen N, Saengnil K and Paratasilpin T. (2003). In vitro propogation of Kaempferia parvilora Wall. Ex Baker. Paper presented at Congress Science and Technology of Thailand, Khon Kean University, Thailand, p. 61.

Duncan D B. (1955). Multiple range and multiple F test. Biometrics 11(1): 1–42. https://doi.org/10.2307/3001478

Hoque M I, Islam M A, Sarker R H and Islam A S. (1996). In vitro microtuber formation in potato (Solanum tuberosum L.). In: Islam A S (Ed.), Plant tissue culture. Calcutta and New Delhi: Oxford & IBH Publisher, 221–228.

Islam M A, Kloppstech K and Jacobsen H J. (2004). Efficient procedure for in vitro microrhizome induction in Curcuma longa l.(Zingiberaceae): A medicinal plant of tropical Asia. Plant Tissue Culture 14(2): 123–134.

Kafindra L, Khumaida N and Ardie S W. (2015). Induksi rimpang mikro Kaempferia parviflora secara in vitro dengan penambahan BA dan sukrosa. Jurnal Hortikultura Indonesia 6(1): 54–63. https://doi.org/10.29244/jhi.6.1.54-63

Kim E K, Hahn E J, Murthy H N and Peak K Y. (2003). High frequency of shoot multiplication and bulblet formation of garlic in liquid cultures. Plant Cell, Tissue and Organ Culture 73: 231–236. https://doi.org/10.1023/A:1023029302462

Lo-apirukkul S, Jenjittikul T, Saralamp P and Prathanturarug S. (2012). Micropropagation of a Thai medicinal plant for women’s health, Curcuma comosa Roxb., via shoot and microrhizome inductions. Journal of Natural Medicines 66(2): 265–270. https://doi.org/10.1007/s11418-011-0577-z

Mongkolchaipak N, Chansuwanit N and Suchantaboot P. (2006). Plant tissue culture of Kaempferia parviflora wall. Bulletin of The Department of Medical Sciences 48(3): 145–155.

Mahmoud S N and Al-Ani N K. (2016). Effect of different sterilization methods on contamination and viability of nodal segments of Cestrum nocturnum L. International Journal of Research Studies in Biosciences (4)1: 4–9. https://doi.org/10.20431/2349-0365.0401002

Nayak S. (2000). In vitro multiplication and microrhizome induction in Curcuma aromatica Salisb. Plant Growth Regulation 32(1): 41–47.

Nayak S and Naik P K. (2006). Factors effecting in vitro microrhizome formation and growth in Curcuma longa L. and improved field performance of micropropagated plants. Science Asia 32: 31–37.

Noor Camellia. (2012). Kunyit hitam. Agromedia Mardi 38(2): 18–19.

Parida R, Mohanty S, Kuanar A and Nayak S. (2010). Rapid multiplication and in vitro production of leaf biomass in Kaempferia galanga through tissue culture. Electronic Journal of Biotechnology 13(4): 5–6. https://doi.org/10.2225/vol13-issue4-fulltext-12

Prathanturarug S, Apichartbutra T, Chuakul W and Saralamp P. (2007). Mass propagation of Kaempferia parviflora Wall. ex Baker by in vitro regeneration. The Journal of Horticultural Science and Biotechnology 82(2): 179–183. https://doi.org/10.1080/14620316.2007.11512217

Rout G R, Palai S K, Samantaray S and Das P. (2001). Effect of growth regulator and culture conditions on shoot multiplication and rhizome formation in ginger (Zingiber officinale Rosc.) in vitro. In Vitro Cellular & Developmental Biology-Plant 37(6): 814–819. https://doi.org/10.1007/s11627-001-0135-6

Rujjanawate C, Kanjanapothi D, Amornlerdpison D and Pojanagaroon S. (2005). Antigastric ulcer effect of Kaempferia parviflora. Journal of Ethnopharmacology 102(1): 120–122. https://doi.org/10.1016/j.jep.2005.03.035S

ae-wong C, Tansakul P and Tewtrakul S. (2009). Anti-inflammatory mechanism of Kaempferia parviflora in murine macrophage cells (RAW 264.7) and in experimental animals. Journal of Ethnopharmacology 124(3): 576–580. https://doi.org/10.1016/j.jep.2009.04.059

Sharma T R and Singh B M. (1995). In vitro microrhizome production in Zingiber officinale Rosc. Plant Cell Reports 15(3-4): 274–277. https://doi.org/10.1007/BF00193735

Shirgurkar M V, John C K and Nadgauda R S. (2001). Factors affecting in vitro microrhizome production in turmeric. Plant Cell Tissue and Organ Culture 64(1): 5–11. https://doi.org/10.1023/A:1010645624618

Shirin F, Kumar S and Mishra Y. (2000). In vitro plantlet production system for Kaempferia galanga, a rare Indian medicinal herb. Plant Cell, Tissue and Organ Culture 63: 193–197. https://doi.org/10.1023/A:1010635920518

Sookkongwaree K, Geitmann M, Roengsumran S, Petsom A and Danielson U H. (2006). Inhibition of viral proteases by Zingiberaceae extracts and flavones isolated from Kaempferia parviflora. Die Pharmazie: An International Journal of Pharmaceutical Sciences 61(8): 717–721.

Techaprasan J, Klinbunga S, Ngamriabsakul C and Jenjittikul T. (2010). Genetic variation of Kaempferia (Zingiberaceae) in Thailand based on chloroplast DNA (psbA-trnH and petA-psbJ) sequences. Genetics and Molecular Research 9(4): 1957–1973. https://doi.org/10.4238/vol9-4gmr873

Tewtrakul S, Subhadhirasakul S and Kummee S. (2008). Anti-allergic activity of compounds from Kaempferia parviflora. Journal of Ethnopharmacology 116(1): 191–193. https://doi.org/10.1016/j.jep.2007.10.042

Trisomboon H. (2009). Kaempferia parviflora: A Thai herbal plant, neither promote reproductive function nor increase libido via male hormone. Thai Journal of Physiological Sciences 21: 83–86.

Tyagi R K, Agrawal A and Yusuf A. (2006). Conservation of Zingiber germplasm through in vitro rhizome formation. Scientia Horticulturae 108(2): 210–219. https://doi.org/10.1016/j.scienta.2006.01.018

Wattanapitayakul S K, Chularojmontri L, Herunsalee A, Charuchongkolwongse S and Chansuvanich N. (2008). Vasorelaxation and antispasmodic effects of Kaempferia parviflora ethanolic extract in isolated rat organ studies. Fitoterapia 79(3): 214–216. https://doi.org/10.1016/j.fitote.2007.11.017

Yenjai C, Prasanphen K, Daodee S, Wongpanich V and Kittakoop P. (2004). Bioactive flavonoids from Kaempferia parviflora. Fitoterapia 75(1): 89–92. https://doi.org/10.1016/j.fitote.2003.08.017

Yenjai C, Wanich S, Pitchuanchom S and Sripanidkulchai B. (2009). Structural modification of 5, 7-dimethoxyflavone from Kaempferia parviflora and biological activities. Archives of Pharmacal Research 32(9): 1179–1184. https://doi.org/10.1007/s12272-009-1900-z

Zheng Y, Liu Y, Ma M and Xu K. (2008). Increasing in vitro microrhizome production of ginger (Zingiber officinale Roscoe). Acta Physiologiae Plantarum 30(4): 513–519. https://doi.org/10.1007/s11738-008-0149-3

Zuraida A R, Nazreena O A, Izzati K F L and Aziz A. (2014). Establishment and optimization growth of shoot buds-derived callus and suspension cell cultures of Kaempferia parviflora. American Journal of Plant Sciences 5(18): 2693. https://doi.org/10.4236/ajps.2014.518284

Zuraida A R, Izzati K F L, Nazreena O A and Omar N. (2015). In vitro microrhizome formation in Kaempferia parviflora. Annual Research & Review in Biology 5(5): 460–467. https://doi.org/10.9734/ARRB/2015/13950